scholarly journals Targeted Mutagenesis of a Candidate t Complex Responder Gene in Mouse t Haplotypes Does Not Eliminate Transmission Ratio Distortion

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 785-792
Author(s):  
U Kevin Ewulonu ◽  
Kerry Schimenti ◽  
Barbara Kuemerle ◽  
Terry Magnuson ◽  
John Schimenti

Abstract Transmission ratio distortion (TRD) associated with mouse t haplotypes causes +/t males to transmit the t-bearing chromosome to nearly all their offspring. Of the several genes involved in this phenomenon, the t complex responder (Tcrt) locus is absolutely essential for TRD to occur. A candidate Tcrt gene called Tcpl0bt was previously cloned from the genetically defined Tcrt region. Its location, restricted expression in testis, and a unique postmeiotic alternative splicing pattern supported the idea that Tcp10bt was Tcrt. To test this hypothesis in a functional assay, ES cells were derived from a viable partial t haplotype, and the Tcp10bt gene was mutated by homologous recombination. Mutant mice were mated to appropriate partial t haplotypes to determine whether the targeted chromosome exhibited transmission ratios characteristic of the responder. The results demonstrated that the targeted chromosome retained full responder activity. Hence, Tcp10bt does not appear to be Tcrt. These and other observations necessitate a reevaluation of genetic mapping data and the actual nature of the responder.

Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 793-801 ◽  
Author(s):  
Mary F Lyon ◽  
John C Schimenti ◽  
Edward P Evans

Abstract Previously a deletion in mouse chromosome 17, T22H, was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T30H, together with three others, T31H, T33H, and T36H, which extended more proximally, caused male sterility when heterozygous with a complete t haplotype and also enhanced transmission ratio of the partial t haplotype t 6, and this was attributed to deletion of the Tcd1 locus. The deletions T29H, T32H, and T34H that extended less proximally than T30H permitted male fertility when opposite a complete t haplotype. These results enabled narrowing of the critical interval for Tcd1 to between the markers D17Mit164 and D17Leh48. In addition, T29H and T32H enhanced the transmission ratio of t6, but significantly less so than T30H. T34H had no effect on transmission ratio. These results could be explained by a new distorter located between the breakpoints of T29H and T34H (between T and D17Leh66E). It is suggested that the original distorter Tcd1 in fact consists of two loci: Tcd1a, lying between D17Mit164 and D17Leh48, and Tcd1b, lying between T and D17Leh66E.


Genomics ◽  
1992 ◽  
Vol 12 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Stephen H. Pilder ◽  
Cindy L. Decker ◽  
Salim Islam ◽  
Christine Buck ◽  
Judith A. Cebra-Thomas ◽  
...  

1989 ◽  
Vol 54 (3) ◽  
pp. 221-225 ◽  
Author(s):  
Lee M. Silver

SummaryComplete t haplotypes can be transmitted at distorted ratios from heterozygous +/t male mice as a consequence of t-specific alleles at a series of t complex distorter loci (Tcd-1t through Tcd-4t) and a t complex responder locus. Partial t haplotypes that lack the Tcd-2t allele cannot be transmitted at the very high ratios characteristic of complete t haplotypes. The breeding studies reported here tested the possibility that the absence of Tcd-2t could be compensated for by the presence of double doses of other Tcdt alleles. The results indicate that a double dose of Tcd-4t alone will not work, but that a double dose of both Tcd-1t and Tcd-4t can promote a very high transmission ratio in the absence of Tcd-2t. These results suggest that the extent to which transmission ratios are distorted is dependent upon the absolute level of expression of the individual Tcd genes. Further studies of genotypic effects on transmission ratio distortion, as well as fertility, lead to the suggestion of a fifth t complex distorter (Tcd-5) locus within t haplotypes.


1999 ◽  
Vol 10 (10) ◽  
pp. 3507-3520 ◽  
Author(s):  
Gregory J. Pazour ◽  
Anthony Koutoulis ◽  
Sharon E. Benashski ◽  
Bethany L. Dickert ◽  
Hong Sheng ◽  
...  

Tctex2 is thought to be one of the distorter genes of the mouset haplotype. This complex greatly biases the segregation of the chromosome that carries it such that in heterozygous +/t males, the t haplotype is transmitted to >95% of the offspring, a phenomenon known as transmission ratio distortion. The LC2 outer dynein arm light chain ofChlamydomonas reinhardtii is a homologue of the mouse protein Tctex2. We have identified Chlamydomonasinsertional mutants with deletions in the gene encoding LC2 and demonstrate that the LC2 gene is the same as the ODA12 gene, the product of which had not been identified previously. Complete deletion of the LC2/ODA12 gene causes loss of all outer arms and a slow jerky swimming phenotype. Transformation of the deletion mutant with the cloned LC2/ODA12 gene restores the outer arms and rescues the motility phenotype. Therefore, LC2 is required for outer arm assembly. The fact that LC2 is an essential subunit of flagellar outer dynein arms allows us to propose a detailed mechanism whereby transmission ratio distortion is explained by the differential binding of mutant (t haplotype encoded) and wild-type dyneins to the axonemal microtubules oft-bearing or wild-type sperm, with resulting differences in their motility.


Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 235-245
Author(s):  
Gregory R Gummere ◽  
Paulette J McCormick ◽  
Dorothea Bennett

ABSTRACT Transmission ratio distortion is a characteristic of complete t-haplotypes, such that heterozygous males preferentially transmit the t-haplotype bearing chromosome 17 to the majority of their progeny. At least two genes contained within the t-haplotype have been identified as being required for such high transmission ratios. In this study we examine the effects of the genetic background and the chromosome homologous to the t-haplotype on transmission ratio distortion. We use two different congenic lines: (1) BTBRTF/Nev.Ttf/t12, in which the t12 haplotype has a transmission ratio of 52%, and (2) C3H/DiSn.Ttf/t12, in which the t12 haplotype has a transmission ratio of 99%. By intercrossing these two strains to produce reciprocal F1 and F2 generations, we have isolated the effects of the homologous chromosome 17 from the effects of the genetic background. We demonstrate that both the homologous chromosome and the genetic background have profound effects on t-haplotype transmission ratio distortion. Furthermore, it is evident that the t-haplotype transmission ratio behaves as a quantitative character rather than an intrinsic property of t-haplotypes.


1993 ◽  
Vol 62 (2) ◽  
pp. 133-137 ◽  
Author(s):  
Lee M. Silver ◽  
Christine Buck

SummaryA novel central partial t haplotype was generated by screening for a recombination event between overlapping distal and proximal partial haplotypes. This haplotype contains just two elements Tcrt and Tcd-3t —involved in the t-specific transmission ratio distortion phenotype. Breeding analysis of males that carry this chromosome provides evidence that Tcd-3 is, indeed, a distorter locus and not a second responder. Furthermore, the data indicate that a single well-defined distorter locus is insufficient to overcome completely the self-destructive, low transmission ratio distortion phenotype expressed by the t allele at the t complex responder locus, although a small, but highly significant, effect was observed.


1981 ◽  
Vol 38 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Lee M. Silver

SUMMARYThe Tcp-1 gene is located within the t complex and codes for a major testicular cell protein called p63/6.9. All wild-type chromosomes carry the Tcp-1b allele which codes for a basic form of this protein, while all complete t haplotypes carry the Tcp-1a allele which codes for an acidic form of this protein. It is not clear whether the Tcp-1 gene is associated with phenotypic effects of t haplotypes on embryogenesis and/or spermatogenesis, since the genetic basis for these effects is extremely complex. The elegant analysis of Lyon & Mason (1977) has allowed the identification and separation of a family of genetic factors which interact to produce the observed phenotypes associated with various combinations of t haplotypes. The data summarized in this report indicate that the Tcp-1a locus is separable from all of the identified t haplotype factors except for one; a complete correlation has been obtained between Tcp-1a and a proximal t haplotype factor which is involved in effects on transmission ratio distortion. Two other novel points emerge from this analysis. First, it appears that the tail interaction factor and the proximal sperm factors represent distinct genetic loci. Second, the accumulated data lead to the proposal that the TOrl chromosome carries a short segment of t haplotype chromatin containing Tcp-1a and proximal sperm factors involved in transmission ratio distortion and sterility.


Sign in / Sign up

Export Citation Format

Share Document