scholarly journals THE INFLUENCE OF GENETIC BACKGROUND AND THE HOMOLOGOUS CHROMOSOME 17 ON t-HAPLOTYPE TRANSMISSION RATIO DISTORTION IN MICE

Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 235-245
Author(s):  
Gregory R Gummere ◽  
Paulette J McCormick ◽  
Dorothea Bennett

ABSTRACT Transmission ratio distortion is a characteristic of complete t-haplotypes, such that heterozygous males preferentially transmit the t-haplotype bearing chromosome 17 to the majority of their progeny. At least two genes contained within the t-haplotype have been identified as being required for such high transmission ratios. In this study we examine the effects of the genetic background and the chromosome homologous to the t-haplotype on transmission ratio distortion. We use two different congenic lines: (1) BTBRTF/Nev.Ttf/t12, in which the t12 haplotype has a transmission ratio of 52%, and (2) C3H/DiSn.Ttf/t12, in which the t12 haplotype has a transmission ratio of 99%. By intercrossing these two strains to produce reciprocal F1 and F2 generations, we have isolated the effects of the homologous chromosome 17 from the effects of the genetic background. We demonstrate that both the homologous chromosome and the genetic background have profound effects on t-haplotype transmission ratio distortion. Furthermore, it is evident that the t-haplotype transmission ratio behaves as a quantitative character rather than an intrinsic property of t-haplotypes.

Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 793-801 ◽  
Author(s):  
Mary F Lyon ◽  
John C Schimenti ◽  
Edward P Evans

Abstract Previously a deletion in mouse chromosome 17, T22H, was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T30H, together with three others, T31H, T33H, and T36H, which extended more proximally, caused male sterility when heterozygous with a complete t haplotype and also enhanced transmission ratio of the partial t haplotype t 6, and this was attributed to deletion of the Tcd1 locus. The deletions T29H, T32H, and T34H that extended less proximally than T30H permitted male fertility when opposite a complete t haplotype. These results enabled narrowing of the critical interval for Tcd1 to between the markers D17Mit164 and D17Leh48. In addition, T29H and T32H enhanced the transmission ratio of t6, but significantly less so than T30H. T34H had no effect on transmission ratio. These results could be explained by a new distorter located between the breakpoints of T29H and T34H (between T and D17Leh66E). It is suggested that the original distorter Tcd1 in fact consists of two loci: Tcd1a, lying between D17Mit164 and D17Leh48, and Tcd1b, lying between T and D17Leh66E.


Genomics ◽  
1992 ◽  
Vol 12 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Stephen H. Pilder ◽  
Cindy L. Decker ◽  
Salim Islam ◽  
Christine Buck ◽  
Judith A. Cebra-Thomas ◽  
...  

1990 ◽  
Vol 55 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Mary F. Lyon

SummaryTransmission ratio distortion due to the mouse t complex is thought to be due to harmful effects of trans-acting distorter genes acting on a responder, with the t complex form of the responder being relatively resistant to this harmful action of the distorters. Previous work had indicated that naturally occurring t haplotypes differed in their responders or in distorters lying near the responder, with the result that animals doubly heterozygous for two responder-carrying haplotypes transmitted these haplotypes unequally. In the present work t haplotypes could be divided into three types on the basis of their transmission when doubly heterozygous with the responder-carrying partial haplotype tlowH. The majority, t0, t6, tw1, tw2 and tw73, were transmitted equally with tlowH, a second group, including tw5 and two haplotypes derived from it, were transmitted less frequently than tlowH, and the single member of a third group, t32, was transmitted in excess of tlowH This last result suggests that the underlying differences are in the responder itself, rather than in the distorters. Search for differences among t haplotypes in distorters produced some equivocal results possibly resulting from effects of genetic background. In particular, results of others suggesting presence of a fourth distorter, Tcd-4, were not confirmed.


1987 ◽  
Vol 49 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Mary F. Lyon

SummaryMale mice heterozygous for two distorter genes, Tcd-1 and Tcd-2, of the mouse t-complex but homozygous wild type for the responder, were generated by crossing animals carrying the partial t-haplotypes th51 and th18 to inbred strains. The fertility of these males was then compared with that of their brothers carrying normal chromosome 17s. On three of the inbred backgrounds used, C3H/HeH, C57BL/6J and TFH/H, the th51th18 + / + + + males were significantly less fertile than their normal sibs. With the fourth inbred strain used, SM/JH, both types of male were nonnally fertile. This confirmed earlier preliminary findings that when both homologues of chromosome 17 carry wild-type alleles of the responder, heterozygosity for the distorter genes is sufficient to impair fertility, but the effect varies with genetic background. These results are consistent with the concept that both the transmission ratio distortion and the male sterility caused by the t-complex are due to harmful effects of the distorter genes on wild-type alleles of the responder.


Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 769-773 ◽  
Author(s):  
J. Brown ◽  
J.A. Cebra-Thomas ◽  
J.D. Bleil ◽  
P.M. Wassarman ◽  
L.M. Silver

Mouse t haplotypes are variant forms of chromosome 17 that can be transmitted at non-Mendelian ratios by heterozygous +/t males. The accumulated genetic data indicate that ‘+-sperm’ and ‘t-sperm’ are produced in equal numbers but that most ‘+-sperm’ are rendered dysfunctional, so that ‘t-sperm’ have a relative advantage at fertilization. To date, the basis for this t-induced sperm dysfunction has remained unknown. Here we demonstrate that a high proportion of sperm obtained from certain strains of +/t mice undergo a premature acrosome reaction under in vitro capacitation conditions. The simplest interpretation of these data, in conjunction with previous results, is that developing ‘+-spermatids’ are preprogrammed by ‘t-spermatids’ to undergo this premature reaction. Since acrosome-reacted sperm are unable to participate in the process of fertilization, this defect could account for the extreme distortion of transmission ratio observed from mice heterozygous for a class of complete t haplotypes.


1999 ◽  
Vol 10 (10) ◽  
pp. 3507-3520 ◽  
Author(s):  
Gregory J. Pazour ◽  
Anthony Koutoulis ◽  
Sharon E. Benashski ◽  
Bethany L. Dickert ◽  
Hong Sheng ◽  
...  

Tctex2 is thought to be one of the distorter genes of the mouset haplotype. This complex greatly biases the segregation of the chromosome that carries it such that in heterozygous +/t males, the t haplotype is transmitted to >95% of the offspring, a phenomenon known as transmission ratio distortion. The LC2 outer dynein arm light chain ofChlamydomonas reinhardtii is a homologue of the mouse protein Tctex2. We have identified Chlamydomonasinsertional mutants with deletions in the gene encoding LC2 and demonstrate that the LC2 gene is the same as the ODA12 gene, the product of which had not been identified previously. Complete deletion of the LC2/ODA12 gene causes loss of all outer arms and a slow jerky swimming phenotype. Transformation of the deletion mutant with the cloned LC2/ODA12 gene restores the outer arms and rescues the motility phenotype. Therefore, LC2 is required for outer arm assembly. The fact that LC2 is an essential subunit of flagellar outer dynein arms allows us to propose a detailed mechanism whereby transmission ratio distortion is explained by the differential binding of mutant (t haplotype encoded) and wild-type dyneins to the axonemal microtubules oft-bearing or wild-type sperm, with resulting differences in their motility.


1990 ◽  
Vol 56 (2-3) ◽  
pp. 179-183 ◽  
Author(s):  
Dorothea Bennett ◽  
Karen Artzt

SummaryWe present data on the effects of three chromosome 17 deletions on transmission ratio distortion (TRD) and sterility of several t-haplotypes. All three deletions have similar effects on male TRD: that is, Tdel/tcomplete genotypes all transmit their t–haplotype in very high proportion. However, each deletion has different effects on sterility of heterozygous males, with Tor/t being fertile, Thp/t less fertile, and Torl/t still less fertile. These data suggest that wild-type genes on chromosomes homologous to f-haplotypes can be important regulators of both TRD and fertility in males, and that the wild-type genes concerned with TRD and fertility are at least to some extent different. The data also provide a rough map of the positions of these genes.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 785-792
Author(s):  
U Kevin Ewulonu ◽  
Kerry Schimenti ◽  
Barbara Kuemerle ◽  
Terry Magnuson ◽  
John Schimenti

Abstract Transmission ratio distortion (TRD) associated with mouse t haplotypes causes +/t males to transmit the t-bearing chromosome to nearly all their offspring. Of the several genes involved in this phenomenon, the t complex responder (Tcrt) locus is absolutely essential for TRD to occur. A candidate Tcrt gene called Tcpl0bt was previously cloned from the genetically defined Tcrt region. Its location, restricted expression in testis, and a unique postmeiotic alternative splicing pattern supported the idea that Tcp10bt was Tcrt. To test this hypothesis in a functional assay, ES cells were derived from a viable partial t haplotype, and the Tcp10bt gene was mutated by homologous recombination. Mutant mice were mated to appropriate partial t haplotypes to determine whether the targeted chromosome exhibited transmission ratios characteristic of the responder. The results demonstrated that the targeted chromosome retained full responder activity. Hence, Tcp10bt does not appear to be Tcrt. These and other observations necessitate a reevaluation of genetic mapping data and the actual nature of the responder.


2008 ◽  
Vol 90 (4) ◽  
pp. 331-339 ◽  
Author(s):  
ANN EILEEN MILLER BAKER

SummaryAlleles of many genes in the house mouse (Mus musculus domesticus) t complex influence embryonic development, male transmission ratio, male fertility and other traits. Homozygous t lethal alleles cause prenatal lethality, whereas male t semilethal homozygotes and males heterozygous for two complementing t lethal haplotypes are sterile. Without a mechanism maintaining these deleterious genes, t lethals and t semilethals should be eliminated by selection. The mechanism for maintaining them is transmission ratio distortion (TRD), which is said to occur when a t/+ male sires a significantly greater proportion of fetuses carrying his t haplotype (80–100%) than his wild-type chromosome 17. To understand how this selfish DNA functions in trapped populations, the objectives of this study were to examine the structure of t haplotypes in Colorado field populations and to determine transmission ratios in these populations. The data presented here indicate two possible causes for lower than expected transmission ratios in field populations: (1) single-sire fertilization by sperm from mosaic t males may lack all t haplotype genes causing high TRD. (2) t-bearing sperm fertilizing multiple-sire litters are diluted by+sperm from males having the most common genotype (+/+).


Sign in / Sign up

Export Citation Format

Share Document