scholarly journals The Male-Determining Activity on the Y Chromosome of the Housefly (Musca domestica L.) Consists of Separable Elements

Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 651-661
Author(s):  
Monika Hediger ◽  
Ariane Denise Minet ◽  
Markus Niessen ◽  
Regula Schmidt ◽  
Denise Hilfiker-Kleiner ◽  
...  

Abstract In the common housefly, the presence or absence of a male-determining factor, M, is responsible for sex determination. In different strains, M has been found on the Y, on the X, or on any of the five autosomes. By analyzing a Y-autosomal translocation and a ring-shaped, truncated Y chromosome, we could show that M on the Y consists of at least two regions with M activity: One of them can be assigned to the short arm of the Y chromosome (MYS), which is largely C-banding negative, the other region lies on the C-banding positive long arm of the Y, including the centromeric part (MYL). Each region alone behaves as a hypomorphic M factor, causing many carriers to develop as intersexes of the mosaic type instead of as males. When introduced into the female germ line by transplantation of progenitor germ cells (pole cells), the MYS shows an almost complete maternal effect that predetermines 96% of the genotypic female (NoM) animals to develop as males. In contrast, the MYL has largely lost its maternal effect, and most of the NoM animals develop as females. Increasing the amount of product made by either of the two hypomorphic M factors (by combining the MYS and MYL or two MYS) leads to complete male development in almost every case. We thus assume that the Y chromosome carries at least two copies of M, and that these are functionally equivalent.

Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
D. Hilfiker-Kleiner ◽  
A. Dubendorfer ◽  
A. Hilfiker ◽  
R. Nothiger

In Musca domestica, sex in the soma is cell autonomously determined by the male-determiner M, or by the female-determiner FD. Transplanted pole cells (precursors of the germ line) show that sex determination of germ cells is non-autonomous genotypically male pole cells form functional eggs in female hosts, and genotypically female pole cells form functional sperm in male hosts. When M/+ cells undergo oogenesis, a male-determining maternal effect predetermines offspring without M, i.e. of female genotype, to develop as fertile males. FD is epistatic to M in the female germ line, as it is in the soma, overruling the masculinizing effect of M. The results suggest that maternal F product is needed for activation of the zygotic F gene.


Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 271-280
Author(s):  
R Schmidt ◽  
M Hediger ◽  
S Roth ◽  
R Nöthiger ◽  
A Dubendorfer

Abstract In Musca domestica, male sex is determined by a dominant factor, M, located either on the Y, the X or on an autosome. M prevents the activity of the female-determining gene F. In the absence of M, F becomes active and dictates female development. The various M factors may represent translocated copies of an ancestral Y-chromosomal M. Double mutants and germ line chimeras show that MY, MI, MII, MIII and MV perform equivalent functions. When brought into the female germ line, they predetermine male development of the offspring. This maternal effect is overruled by the dominant female-determining factor FD. MI and MII are weak M factors, as demonstrated by the presence of yolk proteins in MI/+ males and by the occurrence of some intersexes among the offspring that developed from transplanted MI/+ and MII/+ pole cells. The arrhenogenic mutation Ag has its focus in the female germ line and its temperature-sensitive period during oogenesis. We propose that MI and Ag represent allelic M factors that are affected in their expression. Analysis of mosaic gonads showed that in M. domsticu the sex of the germ line is determined by inductive signals from the surrounding soma. We present a model to account for the observed phenomena.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 221-226 ◽  
Author(s):  
Andreas Dübendorfer ◽  
Monika Hediger

AbstractIn Musca domestica, the common housefly, female development requires the continuous activity of the sex-determining gene F from early embryogenesis until metamorphosis. To activate F in embryogenesis, two conditions must be met: There must be no male-determining M factor in the zygotic genome, and the egg must be preconditioned by F activity in the maternal germ line. This maternal activity can be suppressed by introducing an M factor into the maternal germ line, which causes all offspring, including those that do not carry M, to develop as males. By transplantation of pole cells (germline progenitor cells) we have constructed such females with a genetically male germ line and, simultaneously, males with a genetically female germ line carrying a constitutive allele of F [FDominant (FD)]. Crosses between these animals yielded offspring that, despite the presence of M in the maternal germ line, were of female sex, solely due to zygotic FD brought in via the sperm. This shows that zygotic F function alone is sufficient to promote female development and that in the wild-type situation, maternal F product serves no other function but to activate the zygotic F gene.


1994 ◽  
Vol 14 (10) ◽  
pp. 6809-6818
Author(s):  
M D Garfinkel ◽  
J Wang ◽  
Y Liang ◽  
A P Mahowald

The Drosophila melanogaster shavenbaby (svb)-ovo gene region is a complex locus, containing two distinct but comutable genetic functions. ovo is required for survival and differentiation of female germ line cells and plays a role in germ line sex determination. In contrast, svb is required in both male and female embryos for the production of epidermal locomotor and sensory structures. Sequences required for the two genetic functions are partially overlapping. ovo corresponds to a previously described germ line-dependent 5.0-kb poly(A)+ mRNA that first appears in the germarium and accumulates in nurse cells during oogenesis. The 5.0-kb mRNA is stored in the egg, but it is rapidly lost in the embryos except for its continued presence in the germ line precursor pole cells. The ovo mRNA predicts a 1,028-amino-acid 110.6-kDa protein homologous with transcription factors. We have identified an embryonic mRNA, 7.1 kb in length, that contains exons partially overlapping those of the 5.0-kb poly(A)+ mRNA. The spatial distribution of this newly discovered transcript during midembryogenesis suggests that it corresponds to the svb function. The arrangement of exons common to the 5.0- and 7.1-kb mRNAs suggests that the Ovo and Svb proteins share DNA-binding specificity conferred by four Cys2-His2 zinc finger motifs but differ functionally in their capacity to interact with other components of the transcription machinery.


1994 ◽  
Vol 14 (10) ◽  
pp. 6809-6818 ◽  
Author(s):  
M D Garfinkel ◽  
J Wang ◽  
Y Liang ◽  
A P Mahowald

The Drosophila melanogaster shavenbaby (svb)-ovo gene region is a complex locus, containing two distinct but comutable genetic functions. ovo is required for survival and differentiation of female germ line cells and plays a role in germ line sex determination. In contrast, svb is required in both male and female embryos for the production of epidermal locomotor and sensory structures. Sequences required for the two genetic functions are partially overlapping. ovo corresponds to a previously described germ line-dependent 5.0-kb poly(A)+ mRNA that first appears in the germarium and accumulates in nurse cells during oogenesis. The 5.0-kb mRNA is stored in the egg, but it is rapidly lost in the embryos except for its continued presence in the germ line precursor pole cells. The ovo mRNA predicts a 1,028-amino-acid 110.6-kDa protein homologous with transcription factors. We have identified an embryonic mRNA, 7.1 kb in length, that contains exons partially overlapping those of the 5.0-kb poly(A)+ mRNA. The spatial distribution of this newly discovered transcript during midembryogenesis suggests that it corresponds to the svb function. The arrangement of exons common to the 5.0- and 7.1-kb mRNAs suggests that the Ovo and Svb proteins share DNA-binding specificity conferred by four Cys2-His2 zinc finger motifs but differ functionally in their capacity to interact with other components of the transcription machinery.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1023-1029 ◽  
Author(s):  
M. Mukai ◽  
M. Kashikawa ◽  
S. Kobayashi

In many animal groups, the interaction between germ and somatic line is required for germ-line development. In Drosophila, the germ-line precursors (pole cells) formed at the posterior tip of the embryos migrate toward the mesodermal layer where they adhere to the dorsolateral mesoderm, which ensheaths the pole cells to form the embryonic gonads. These mesodermal cells may control the expression of genes that function in pole cells for their development into germ cells. However, such downstream genes have not been isolated. In this study, we identify a novel transcript, indora (idr), which is expressed only in pole cells within the gonads. Reduction of idr transcripts by an antisense idr expression caused the failure of pole cells to produce functional germ cells in females. Furthermore, we demonstrate that idr expression depends on the presence of the dorsolateral mesoderm, but it does not necessarily require its specification as the gonadal mesoderm. Our findings suggest that the induction of idr in pole cells by the mesodermal cells is required for germ-line development.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 173-183 ◽  
Author(s):  
R Schmidt ◽  
M Hediger ◽  
R Nöthiger ◽  
A Dübendorfer

In Musca domestica, the primary signal for sex determination is the dominant factor M, which is assumed to regulate a postulated female-determining gene F. Presence of M prevents expression of F so that male development ensues. In the absence of M, F can become active, which dictates the female pathway. The existence of F is inferred from FD, a dominant factor that is epistatic to M. We describe a new mutation masculinizer, which has all the properties expected for a null or strongly hypomorphic allele of F: (1) it maps to the same chromosomal location as FD, (2) homozygous man/man animals develop as males, (3) homozygous man/man clones generated in man/+ female larvae differentiate male structures, (4) man has a sex-determining maternal effect. About a third of the morphological males synthesize yolk proteins, which indicates that they are intersexual in internal structures. The maternal effect of man is complete in offspring that derive from homozygous man/man pole cells transplanted into female hosts. In this case, all man/+ progeny become fertile males that do not produce yolk proteins. A sex-determining maternal effect has previously been demonstrated for FD. Like F, maternal man  + is needed for zygotic man  + to become active, providing further evidence that man is a loss-of-function allele of F.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1227-1244 ◽  
Author(s):  
Steffi Kuhfittig ◽  
János Szabad ◽  
Gunnar Schotta ◽  
Jan Hoffmann ◽  
Endre Máthé ◽  
...  

Abstract The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkinDominant (ptnD), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in variegating rearrangements. The ptnD mutation causes ectopic binding of the SU(VAR)3-9 heterochromatin protein at many euchromatic sites and, unlike other modifiers of PEV, it also affects stable position effects. Specifically, it induces silencing of white+ transgenes inserted at a wide variety of euchromatic sites. ptnD is associated with dominant female sterility. +/+ embryos produced by ptnD/+ females mated with wild-type males die at the end of embryogenesis, whereas the ptnD/+ sibling embryos arrest development at cleavage cycle 1-3, due to a combined effect of maternally provided mutant product and an early zygotic lethal effect of ptnD. This is the earliest zygotic effect of a mutation so far reported in Drosophila. Germ-line mosaics show that ptn+ function is required for normal development in the female germ line. These results, together with effects on PEV and white+ transgenes, are consistent with the hypothesis that the ptn gene plays an important role in chromatin regulation during development of the female germ line and in early embryogenesis.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 293-308 ◽  
Author(s):  
S R Russell ◽  
K Kaiser

Abstract We have identified of set of related transcripts expressed in the germ line of male Drosophila melanogaster. Surprisingly, while one of the corresponding genes is autosomal the remainder are located on the Y chromosome. The autosomal locus, at 77F on chromosome arm 3L, corresponds to the previously described transcription unit 18c, located in the first intron of the gene for an RI subunit of cAMP-dependent protein kinase. The Y chromosome copies have been mapped to region h18-h19 on the cytogenetic map of the Y outside of any of the regions required for male fertility. In contrast to D. melanogaster, where Y-linked copies were found in nine different wild-type strains, no Y-linked copies were found in sibling species. Several apparently Y-derived cDNA clones and one Y-linked genomic clone have been sequenced. The Y-derived genomic DNA shares the same intron/exon structure as the autosomal copy as well as related flanking sequences suggesting that it transposed to the Y from the autosomal locus. However, this particular Y-linked copy cannot encode a functional polypeptide due to a stop codon at amino acid position 72. Divergence among five different cDNA clones ranges from 1.5 to 6% and includes a large number of third position substitutions. We have not yet obtained a full-length cDNA from a Y-linked gene and therefore cannot conclude that the D. melanogaster Y chromosome contains functional protein-coding genes. The autosomal gene encodes a predicted polypeptide with 45% similarity to histones of the H5 class and more limited similarity to cysteine-rich protamines. This protein may be a distant relative of the histone H1 family perhaps involved in sperm chromatin condensation.


2006 ◽  
Vol 8 (1) ◽  
pp. 8-8
Author(s):  
Magdalena Skipper
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document