scholarly journals Protein Determinants of Insertional Specificity for the Drosophila Gypsy Retrovirus

Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1101-1110
Author(s):  
Mariano Labrador ◽  
Victor G Corces

Abstract The gypsy retrovirus invades the germ line of Drosophila females, inserting with a high frequency into the ovo locus. Gypsy insertion sites in ovo are clustered within a region in the promoter of the ovo gene that contains multiple binding sites for the OvoA and OvoB proteins. We found that a 1.3-kb DNA fragment containing this region is able to confer gypsy insertional specificity independent of its genomic location. The frequency of gypsy insertions into the ovo gene is significantly lower in wild-type females than in ovoD1 females. In addition, gypsy insertions in ovoD1 females occur during most stages of germ-line development whereas insertions in wild-type females occur only in late stages. This pattern of temporally specific insertions, as well as the higher frequency of insertion in ovoD1 females, correlates with the presence of the OvoA or OvoD1 proteins. The results suggest that gypsy insertional specificity might be determined by the binding of the OvoA repressor isoform to the promoter region of the gene.

1993 ◽  
Vol 7 (8) ◽  
pp. 979-991 ◽  
Author(s):  
Z Galcheva-Gargova ◽  
J P Tokeson ◽  
L K Karagyosov ◽  
K M Ebert ◽  
D L Kilpatrick

IUCrJ ◽  
2014 ◽  
Vol 1 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Mayank Aggarwal ◽  
Bhargav Kondeti ◽  
Chingkuang Tu ◽  
C. Mark Maupin ◽  
David N. Silverman ◽  
...  

Human carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O) in/out of the active siteviaHis64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole) have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations) the activity of H64A CA II.


2019 ◽  
Vol 19 (24) ◽  
pp. 2239-2253 ◽  
Author(s):  
Paul J. Goldsmith

The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.


1993 ◽  
Vol 58 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Imad Al-Bala'a ◽  
Richard D. Bates

The role of more than one binding site on a nitroxide free radical in magnetic resonance determinations of the properties of the complex formed with a hydrogen donor is examined. The expression that relates observed hyperfine couplings in EPR spectra to complex formation constants and concentrations of each species in solution becomes much more complex when multiple binding sites are present, but reduces to a simpler form when binding at the two sites occurs independently and the binding at the non-nitroxide site does not produce significant differences in the hyperfine coupling constant in the complexed radical. Effects on studies of hydrogen bonding between multiple binding site nitroxides and hydrogen donor solvent molecules by other magnetic resonance methods are potentially more extreme.


The Analyst ◽  
2017 ◽  
Vol 142 (2) ◽  
pp. 302-309 ◽  
Author(s):  
Yanxia Li ◽  
Yiting Chen ◽  
Lu Huang ◽  
BenYong Lou ◽  
Guonan Chen

A kind of protein imprinted over magnetic Fe3O4@Au multifunctional nanoparticles (NPs) with multiple binding sites was synthesized and investigated.


Sign in / Sign up

Export Citation Format

Share Document