scholarly journals IN SUPPORT OF THE TELOMERE CONCEPT

Genetics ◽  
1975 ◽  
Vol 80 (1) ◽  
pp. 135-142
Author(s):  
Paul A Roberts

ABSTRACT The frequency of recovered X-ray-induced (4000R) rearrangements that, in all probability, mimic terminal deletions of the X chromosome was only one of, roughly, 105  X chromosomes screened for tip deficiencies. Although the single exception looks terminally deleted, it is probably capped by a very short or nonpolytene telomeric segment. It is apparent from these data that the probability of "healing" or stabilization of a terminally deleted X in the zygotic nucleus or developing embryo of Drosophila melanogaster is vanishingly small. The telomeric caps in two obviously interstitial deficiencies that were recovered represent, roughly, 1/500 of the length of a mitotic chromosome. These findings give some indication of the extreme difficulty of detecting short telomeric segments capping either deleted polytene chromosomes or deleted metaphase chromosomes of, for example, humans.

1996 ◽  
Vol 68 (3) ◽  
pp. 191-202 ◽  
Author(s):  
Mark Tudor ◽  
Andrew Mitchelson ◽  
Kevin O'hare

SummaryA 1·5 kilobasepair repeated DNA sequence is duplicated in direct orientation so as to flank the suppressor of forked gene in the euchromatin–heterochromatin transition region on the X chromosome of Drosophila melanogaster. These two copies are almost identical, but DNA blotting, analysis of cloned sequences and database searches show that elsewhere in the genome, homologous sequences are poorly conserved. They are often associated with other repeats, suggesting that they may belong to a scrambled and clustered middle repetitive DNA family. The sequences do not appear to be related to transposable elements and their location in different strains is conserved. In situ hybridization to metaphase chromosomes shows that homologous sequences are concentrated in the pericentric regions of the autosomes and the X chromosome. The sequences are not significantly under-represented in DNA from polytene tissue and must lie in the replicated regions of polytene chromosomes. The almost perfect conservation of the two repeats around suppressor of forked in D. melanogaster suggests they arose by duplication or gene conversion. Suppression of recombination in this chromosomal region presumably allows this unusual organization to be stably maintained. In the X-ray induced allele, suppressor of forked-L26, the sequence between the repeats, including the gene, and one copy of the repeat have been deleted.


Genetics ◽  
1989 ◽  
Vol 121 (2) ◽  
pp. 293-311
Author(s):  
D Mathog ◽  
J W Sedat

Abstract The three-dimensional organization of polytene chromosomes within nuclei containing rearranged X chromosomes was examined in male Drosophila melanogaster. Salivary glands of third instar larvae containing either an inverted X chromosome (YSX.YL, In(1)EN/O) or a ring X chromosome (R(1) 2/BSYy+) were fixed, embedded, and serially sectioned. The nuclei in contiguous groups of cells were modeled and analyzed. We find that for both genotypes the three-dimensional behavior at each euchromatic locus is independent of the orientation of the chromosome on which it resides, independent of the behavior of loci not closely linked to it, and not similar in neighboring cells. The preference for right-handed chromosome coiling noted in previous studies is shown to be independent of homologous pairing. However, a relation between the extent of chromosome curvature and the handedness of chromosome coiling is present only in homologously paired chromosomes. The attached-XY chromosome has two previously undescribed behaviors: a nearly invariant association of the euchromatic side of the proximal heterochromatin/euchromatin junction with the nucleolus and a frequent failure of this site to attach to the chromocenter. The relative chromosome arm positions are often similar in several neighboring cells. The size of these patches of cells, assuming that they represent clones, indicates that such arrangements are at best quasi-stable: they may be maintained over at least one, but less than four, cell divisions. The observed nuclear organization in salivary glands is inconsistent with the idea that position in the polytene nucleus plays a major role in the normal genetic regulation of euchromatic loci.


Genetics ◽  
1982 ◽  
Vol 101 (3-4) ◽  
pp. 461-476
Author(s):  
Todd R Laverty ◽  
J K Lim

ABSTRACT In this study, we show that at least one lethal mutation at the 3F-4A region of the X chromosome can generate an array of chromosome rearrangements, all with one chromosome break in the 3F-4A region. The mutation at 3F-4A (secondary mutation) was detected in an X chromosome carrying a reverse mutation of an unstable lethal mutation, which was mapped in the 6F1-2 doublet (primary mutation). The primary lethal mutation at 6F1-2 had occurred in an unstable chromosome (Uc) described previously (Lim 1979). Prior to reversion, the 6F1-2 mutation had generated an array of chromosome rearrangements, all having one break in the 6F1-2 doublet (Lim 1979, 1980). In the X chromosomes carrying the 3F-4A secondary lethal mutation the 6F1-2 doublet was normal and stable, as was the 3F-4A region in the X chromosome carrying the primary lethal mutation. The disappearance of the instability having a set of genetic properties at one region (6F1-2) accompanied by its appearance elsewhere in the chromosome (3F-4A) implies that a transposition of the destabilizing element took place. The mutant at 3F-4A and other secondary mutants exhibited all but one (reinversion of an inversion to the normal sequence) of the eight properties of the primary lethal mutations. These observations support the view that a transposable destabilizing element is responsible for the hypermutability observed in the unstable chromosome and its derivaties.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 627-636
Author(s):  
C Q Lai ◽  
T F Mackay

Abstract To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.


1986 ◽  
Vol 28 (2) ◽  
pp. 180-188 ◽  
Author(s):  
D. G. Bedo

Polytene chromosomes were found in several larval and pupal tissues of the Medfly, Ceratitis capitata, during a search for chromosomes suitable for detailed cytological analysis. Well-banded highly polytene chromosomes, which could be adequately separated and spread, were found in trichogen cells of the spatulate superior orbital bristles of male pupae. These chromosomes proved suitable for full polytene analysis. Thoracic trichogen cells of both male and female pupae also contain useful polytene chromosomes, although they are considerably thinner and thus more difficult to analyze. Contrasting with those in pupal trichogen cells, the chromosomes in the salivary glands, Malphighian tubules, midgut, hindgut, and fat body of larvae and pupae were difficult to prepare because of high levels of ectopic pairing and chromosome fragmentation. In hindgut preparations partial separation of up to three chromosomes was achieved, but in all other tissues no useful chromosome separation was possible. In trichogen polytene cells, five banded chromosomes and a prominent heterochromatic network associated with a nucleolus are found. The mitotic chromosomes respond to C- and Q-banding and silver staining with considerable variation. This is especially so in the X chromosome, which displays an extensive array of bands following both Q-banding and silver staining. Comparison of Q-banded metaphase and polytene chromosomes demonstrates that the five autosomes are represented by conventional polytene chromosomes, while the sex chromosomes are contained in the heterochromatic net, most of which fluoresces strongly. This suggests that the Q-bands of the mitotic X chromosome are replicated to a greater extent than the nonfluorescent material in polytene cells. This investigation shows C. capitata to have excellent cytological material for both polytene and mitotic analysis.Key words: Ceratitis capitata, Medfly, chromosomes (polytene), banding (chromosome).


Genetics ◽  
1982 ◽  
Vol 102 (1) ◽  
pp. 75-89
Author(s):  
Paul A Roberts ◽  
David J Broderick

ABSTRACT Most of some 33 X-ray-induced duplications recovered as Suppressors of Minute loci proved to be direct tandem duplications. When heterozygous, most duplications were crossover suppressors, and duplications of short to moderate size did not reduce the fitness of their bearers. Crossover suppression by tandem duplication may be attributed to intrastrand foldbacks of the type regularly seen in somatic polytene chromosomes. As a consequence, linkage disequilibrium between duplicated elements and normal chromosomes should be more profound than has been supposed. Tandem duplications appear to be predisposed by reason of frequency of generation, crossover suppression and fitness effects to serve as the primary source of new genes.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 95-103
Author(s):  
R J Morrison ◽  
J D Raymond ◽  
J R Zunt ◽  
J K Lim ◽  
M J Simmons

Abstract Males carrying different X chromosomes were tested for the ability to produce daughters with attached-X chromosomes. This ability is characteristic of males carrying an X chromosome derived from 59b-z, a multiply marked X chromosome, and is especially pronounced in males carrying the unstable 59b-z chromosomes Uc and Uc-lr. Recombination experiments with one of the Uc-lr chromosomes showed that the formation of compound chromosomes depends on two widely separated segments. One of these is proximal to the forked locus and is probably proximal to the carnation locus. This segment may contain the actual site of chromosome attachment. The other essential segment lies between the crossveinless and vermilion loci and may contain multiple factors that influence the attachment process.


Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 455-470
Author(s):  
Hideh Harger ◽  
David G Holm

ABSTRACT In females of Drosophila melanogaster, compound autosomes enter the repulsion phase of meiosis uncommitted to a particular segregation pattern because their centromeres are not restricted to a bivalent pairing complex as a consequence of crossing over. Their distribution at anaphase, therefore, is determined by some meiotic property other than exchange pairing, a property that for many years has been associated with the concept of nonhomologous pairing. In the absence of heterologous rearrangements or a free Y chromosome, C(3L) and C(3R) are usually recovered in separate gametes, that is as products of meiotic segregation. Nevertheless, there is a regular, albeit infrequent, recovery of reciprocal meiotic products (the nonsegregational products) that are disomic and nullosomic for compound thirds. The frequency of these exceptions, which is normally between 0.5 and 5.0%, differs for the various strains examined, but remains constant for any given strain. Since previous studies have not uncovered a cause for this base level of nonsegregation, it has been referred to as the spontaneous frequency. In this study, crosses between males and females whose X chromosomes, as well as compound autosomes, are differentially marked reveal a highly significant positive correlation between the frequency of compound-autosome nonsegregation and the frequency of X-chromosome nondisjunction. However, an inverse correlation is found when the frequency of nondisjunction is related to the frequency of crossing over in the proximal region of the X chromosome. These findings have been examined with reference to the distributive pairing and the chromocentral models and interpreted as demonstrating (1) that nonsegregational meiotic events arise primarily as a result of nonhomologous interactions, (2) that forces responsible for the segregation of nonhomologous chromosomes are properties of the chromocentral region, and (3) that these forces come into expression after the exchange processes are complete.


1946 ◽  
Vol 62 (2) ◽  
pp. 114-119 ◽  
Author(s):  
B. M. Slizynski

The problem to be presented here emerges from the following groups of facts and more or less generally accepted opinions.As heterochromatin we may define those parts of chromosomes which reach maximum nucleic acid charge in mitosis or meiosis in times other than metaphase. In salivary gland chromosomes (which are more conveniently called polytene chromosomes) of Drosophila melanogaster the proximal heterochromatic parts of all chromosomes come together and form a central undifferentiated mass, the chromocentre. Genetically heterochromatin forms the so-called inert regions of the chromosomes.


Genetics ◽  
1974 ◽  
Vol 76 (1) ◽  
pp. 51-63
Author(s):  
William M Gelbart

ABSTRACT A new mutant, mit (mitotic loss inducer), is described. The mutant is recessive and maternal in action, producing gynandromorphs and haplo-4 mosaics among the progeny of homozygous mit females. Mosaic loss of maternal or paternal chromosomes can occur. The probabilities of either maternal or paternal X chromosome loss are equal. mit has been mapped to approximately 57 on the standard X chromosome map.—Using gyandromorphs generated by mit, a morphogenetic fate map, placing the origins of 40 cuticular structures on the blastoderm surface, has been constructed. This fate map is consistent with embryological data and with the two other fate maps generated in different ways.


Sign in / Sign up

Export Citation Format

Share Document