scholarly journals An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesca Vallese ◽  
Cristina Catoni ◽  
Domenico Cieri ◽  
Lucia Barazzuol ◽  
Omar Ramirez ◽  
...  

AbstractMembrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.

Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P. Haslam ◽  
Steffen Vanneste ◽  
...  

SUMMARYEndoplasmic Reticulum-Plasma Membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to WT while the levels of most glycerolipid species remain unchanged. Additionally, SYT1-GFP preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a crucial SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2016 ◽  
Vol 44 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Michael Selitrennik ◽  
Sima Lev

Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayers in vitro. They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action.


2018 ◽  
Vol 217 (10) ◽  
pp. 3593-3607 ◽  
Author(s):  
Björn D.M. Bean ◽  
Samantha K. Dziurdzik ◽  
Kathleen L. Kolehmainen ◽  
Claire M.S. Fowler ◽  
Waldan K. Kwong ◽  
...  

The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes. We characterize an interaction motif in the Ypt35 N terminus and identify related motifs in the prospore membrane adaptor Spo71 and the mitochondrial membrane protein Mcp1. We find that Mcp1 is a mitochondrial adaptor for Vps13, and the Vps13–Mcp1 interaction, but not Ypt35, is required when ER-mitochondria contacts are lost. All three adaptors compete for binding to a conserved six-repeat region of Vps13 implicated in human disease. Our results support a competition-based model for regulating Vps13 localization at cellular membranes.


2014 ◽  
Vol 204 (7) ◽  
pp. 1083-1086 ◽  
Author(s):  
Nikolaus Pfanner ◽  
Martin van der Laan ◽  
Paolo Amati ◽  
Roderick A. Capaldi ◽  
Amy A. Caudy ◽  
...  

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

AbstractMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.


2021 ◽  
Author(s):  
Sukrut Kamerkar ◽  
Jagjeet Singh ◽  
Subham Tripathy ◽  
Hemangi Bhonsle ◽  
Mukesh Kumar ◽  
...  

Coordinated cell function requires inter-organelle communication across Membrane Contact Sites (MCS). Here we deposit ER-enriched microsomes purified from rat liver or from cultured cells on a coverslip in the form of a continuous planar membrane. We visualize real-time protein and lipid exchanges across MCS that form between this ER-mimicking membrane and lipid droplets purified from rat liver. An Optical trap is used to demonstrate physical tethering of individual lipid droplets to the ER-mimicking membrane at MCS, and to directly measure the strength of this tether. In-vitro MCS formation changes dramatically in response to metabolic state and immune activation in the animal. Surprisingly, we find that the Rab18 GTPase and Phosphatidic acid are common molecular factors to control both of these pathways. This assay could possibly be adapted to interrogate MCS formation between other membranes (e.g. mitochondria, peroxisomes, endosomes etc.), and abnormalities therein that cause neurological, metabolic and pathogenic diseases.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Asami Kawasaki ◽  
Akiko Sakai ◽  
Hiroki Nakanishi ◽  
Junya Hasegawa ◽  
Tomohiko Taguchi ◽  
...  

Membrane contact sites (MCSs) serve as a zone for nonvesicular lipid transport by oxysterol-binding protein (OSBP)-related proteins (ORPs). ORPs mediate lipid countertransport, in which two distinct lipids are transported counterdirectionally. How such lipid countertransport controls specific biological functions, however, remains elusive. We report that lipid countertransport by ORP10 at ER–endosome MCSs regulates retrograde membrane trafficking. ORP10, together with ORP9 and VAP, formed ER–endosome MCSs in a phosphatidylinositol 4-phosphate (PI4P)-dependent manner. ORP10 exhibited a lipid exchange activity toward its ligands, PI4P and phosphatidylserine (PS), between liposomes in vitro, and between the ER and endosomes in situ. Cell biological analysis demonstrated that ORP10 supplies a pool of PS from the ER, in exchange for PI4P, to endosomes where the PS-binding protein EHD1 is recruited to facilitate endosome fission. Our study highlights a novel lipid exchange at ER–endosome MCSs as a nonenzymatic PI4P-to-PS conversion mechanism that organizes membrane remodeling during retrograde membrane trafficking.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Marina Besprozvannaya ◽  
Eamonn Dickson ◽  
Hao Li ◽  
Kenneth S Ginburg ◽  
Donald M Bers ◽  
...  

Endoplasmic reticulum (ER) membrane contact sites (MCSs) are crucial regulatory hubs in cells, playing roles in signaling, organelle dynamics, and ion and lipid homeostasis. Previous work demonstrated that the highly conserved yeast Ltc/Lam sterol transporters localize and function at ER MCSs. Our analysis of the human family members, GRAMD1a and GRAMD2a, demonstrates that they are ER-PM MCS proteins, which mark separate regions of the plasma membrane (PM) and perform distinct functions in vivo. GRAMD2a, but not GRAMD1a, co-localizes with the E-Syt2/3 tethers at ER-PM contacts in a PIP lipid-dependent manner and pre-marks the subset of PI(4,5)P2-enriched ER-PM MCSs utilized for STIM1 recruitment. Data from an analysis of cells lacking GRAMD2a suggest that it is an organizer of ER-PM MCSs with pleiotropic functions including calcium homeostasis. Thus, our data demonstrate the existence of multiple ER-PM domains in human cells that are functionally specialized by GRAM-domain containing proteins.


Sign in / Sign up

Export Citation Format

Share Document