Pathogenesis of Bacteriuria in Elderly Women: The Role of Escherichia Coli Adherence to Vaginal Epithelial Cells

1984 ◽  
Vol 39 (6) ◽  
pp. 682-685 ◽  
Author(s):  
J. D. Sobel ◽  
G. Muller
2021 ◽  
Author(s):  
Xia Liu ◽  
Ting Luan ◽  
Wanqing Zhou ◽  
Lina Yan ◽  
Hua Qian ◽  
...  

Estrogen, the predominant sex hormone, has been found to be related to the occurrence of vaginal infectious diseases. However, its role in the occurrence and development of bacterial vaginitis caused by Escherichia coli is still unclear. The objective of this study was to investigate the role of 17β-estrogen in E. coli adhesion on human vaginal epithelial cells. The vaginal epithelial cell line, VK2/E6E7, was used to study the molecular events induced by estrogen between E. coli and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation with cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by Western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα-FAK signaling cascade. The results showed that, following the stimulation with 1000 nM estrogen for 48 h, a transient activation of ERα and FAK was observed, as well as the increased average number of E. coli adhering to vaginal epithelial cell. In addition, estrogen-induced activation of ERa and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 μM concentration and acted for 1 h, and a decrease in the number of adherent E. coli was observed simultaneously. However, this inhibitory effect diminished as the concentration of estrogen increased. In conclusion, FAK and ERα signaling cascades were assosiated with the increasing E. coli adherence to vaginal epithelial cells, which was promoted by a certain concentration of estrogen.


2006 ◽  
Vol 74 (4) ◽  
pp. 2293-2303 ◽  
Author(s):  
Jorge E. Vidal ◽  
Fernando Navarro-García

ABSTRACT EspC is an autotransporter protein secreted by enteropathogenic Escherichia coli (EPEC). The pathogenic role of EspC in EPEC infection is unknown. We have shown that the purified EspC produces enterotoxicity and cytotoxicity; for the latter effect, EspC must be internalized. However, the internalization mechanism is unknown. Here we show that azithromycin (an inhibitor of pinocytosis), but not drugs affecting caveole-, clathrin-, or receptor-mediated endocytosis, inhibited purified EspC internalization and cytoskeletal disruption, suggesting that purified EspC is internalized by pinocytosis. Furthermore, unlike in cholera toxin, we were unable to detect a receptor on epithelial cells by pretreatment at 4°C. Upon EspC entry, it is delivered directly into the cell cytosol, as shown by the fact that drugs that inhibit intracellular trafficking had no effect on cytoskeletal disruption. All these data suggest that purified EspC internalization is not a physiological internalization mechanism; hence, we explored EspC internalization during the infection of epithelial cells by EPEC. Like other EPEC virulence factors, EspC secretion is stimulated by EPEC when it is grown in cell culture medium and enhanced by the presence of epithelial cells. Physiologically secreted EspC was efficiently internalized during EPEC and host cell interaction. Additionally, the lack of EspC internalization caused by using an isogenic mutant prevented the cytopathic effect caused by EPEC. These data suggest that EPEC uses an efficient mechanism to internalize milieu-secreted EspC into epithelial cells; once inside the cells, EspC is able to induce the cytopathic effect caused by EPEC.


2007 ◽  
Vol 177 (6) ◽  
pp. 2357-2360 ◽  
Author(s):  
K. Gupta ◽  
M.Y. Chou ◽  
A. Howell ◽  
C. Wobbe ◽  
R. Grady ◽  
...  

2008 ◽  
Vol 389 (6) ◽  
Author(s):  
Julie L.V. Shaw ◽  
Eleftherios P. Diamandis

AbstractHuman tissue kallikrein-related peptidases (KLK) are a family of 15 genes located on chromosome 19q13.4 that encode secreted serine proteases with trypsin- and/or chymotrypsin-like activity. Relatively large levels of many KLKs are present in human cervico-vaginal fluid (CVF) and in the supernatant of cultured human vaginal epithelial cells. Many KLKs are also hormonally regulated in vaginal epithelial cells, particularly by glucocorticoids and estrogens. The physiological role of KLK in the vagina is currently unknown; however, analysis of the CVF proteome has revealed clues for potential KLK functions in this environment. Here, we detail potential roles for KLKs in cervico-vaginal physiology. First, we suggest that KLKs play a role in the vagina similar to their role in skin physiology: (1) in the desquamation of vaginal epithelial cells, similar to their activity in the desquamation of skin corneocytes; and (2) in their ability to activate antimicrobial proteins in CVF as they do in sweat. Consequently, we hypothesize that dysregulated KLK expression in the vagina could lead to the development of pathological conditions such as desquamative inflammatory vaginitis. Second, we propose that KLKs may play a role in premature rupture of membranes and pre-term birth through their cleavage of fetal membrane extracellular matrix proteins.


Author(s):  
Dominique Yáñez ◽  
Mariana Izquierdo ◽  
Fernando Ruiz-Perez ◽  
James P. Nataro ◽  
Jorge A. Girón ◽  
...  

1999 ◽  
Vol 67 (8) ◽  
pp. 3847-3854 ◽  
Author(s):  
B. N. Singh ◽  
J. J. Lucas ◽  
D. H. Beach ◽  
S. T. Shin ◽  
R. O. Gilbert

ABSTRACT An in vitro culture system of bovine vaginal epithelial cells (BVECs) was developed to study the cytopathogenic effects ofTritrichomonas foetus and the role of lipophosphoglycan (LPG)-like cell surface glycoconjugates in adhesion of parasites to host cells. Exposure of BVEC monolayers to T. foetusresulted in extensive damage of monolayers. Host cell disruption was measured quantitatively by a trypan blue exclusion assay and by release of 3H from [3H]thymidine-labeled host cells. Results indicated contact-dependent cytotoxicity of host cells byT. foetus. The cytopathogenic effect was a function ofT. foetus density. Metronidazole- or periodate-treatedT. foetus showed no damage to BVEC monolayers. A related human trichomonad, Trichomonas vaginalis, showed no cytotoxic effects, indicating species-specific host-parasite interactions. A direct binding assay was developed and used to investigate the role of a major cell surface LPG-like molecule in host-parasite adhesion. The results of competition experiments showed that the binding to BVECs was displaceable, was saturable, and yielded a typical binding curve, suggesting that specific receptor-ligand interactions mediate the attachment of T. foetus to BVECs. Progesterone-treated BVECs showed enhanced parasite binding. T. foetus LPG inhibited the binding of T. foetus to BVECs; the LPG from T. vaginalis and a variety of other glycoconjugates did not. These data imply specificity of LPG on host-parasite adhesion. Periodate-treated parasites showed no adherence to host cells, indicating the involvement of carbohydrate containing molecules in the adhesion process.


2021 ◽  
Author(s):  
Heather Park

Enteropathogenic Escherichia coli (EPEC) is a diarrheagic pathogen that has been the cause of severe and persistent infant diarrhea worldwide. EPEC invades the gastrointestinal tract where it hijacks host cell signaling and evades immune response long enough to cause the disease. This study was done to establish the role of PI3K signaling in EPEC induced apoptosis in epithelial cells. This report demonstrates that EPEC infected cells activate the anti-apoptotic signaling protein Akt via phosphorylation along with another anti-apoptotic signaling protein, Bcl-2. At the same time during EPEC infection the pro-aptoptotic protein Bax is inhibited. The activation of Akt was also observed with the addition of lipopolysaccharide (LPS) in the presence of serum. This thesis suggests that there are likely separate sensing mechanisms for EPEC, LPS and serum that are independent but synergistic and that Akt is the integration site of these signaling cascades.


Sign in / Sign up

Export Citation Format

Share Document