scholarly journals Inverting magnetotelluric data with distortion correction—stability, uniqueness and trade-off with model structure

2020 ◽  
Vol 222 (3) ◽  
pp. 1620-1638 ◽  
Author(s):  
M Moorkamp ◽  
A Avdeeva ◽  
Ahmet T Basokur ◽  
Erhan Erdogan

SUMMARY Galvanic distortion of magnetotelluric (MT) data is a common effect that can impede the reliable imaging of subsurface structures. Recently, we presented an inversion approach that includes a mathematical description of the effect of galvanic distortion as inversion parameters and demonstrated its efficiency with real data. We now systematically investigate the stability of this inversion approach with respect to different inversion strategies, starting models and model parametrizations. We utilize a data set of 310 MT sites that were acquired for geothermal exploration. In addition to impedance tensor estimates over a broad frequency range, the data set also comprises transient electromagnetic measurements to determine near surface conductivity and estimates of distortion at each site. We therefore can compare our inversion approach to these distortion estimates and the resulting inversion models. Our experiments show that inversion with distortion correction produces stable results for various inversion strategies and for different starting models. Compared to inversions without distortion correction, we can reproduce the observed data better and reduce subsurface artefacts. In contrast, shifting the impedance curves at high frequencies to match the transient electromagnetic measurements reduces the misfit of the starting model, but does not have a strong impact on the final results. Thus our results suggest that including a description of distortion in the inversion is more efficient and should become a standard approach for MT inversion.

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 158-173 ◽  
Author(s):  
Gary W. McNeice ◽  
Alan G. Jones

Accurate interpretation of magnetotelluric data requires an understanding of the directionality and dimensionality inherent in the data, and valid implementation of an appropriate method for removing the effects of shallow, small‐scale galvanic scatterers on the data to yield responses representative of regional‐scale structures. The galvanic distortion analysis approach advocated by Groom and Bailey has become the most adopted method, rightly so given that the approach decomposes the magnetotelluric impedance tensor into determinable and indeterminable parts, and tests statistically the validity of the galvanic distortion assumption. As proposed by Groom and Bailey, one must determine the appropriate frequency‐independent telluric distortion parameters and geoelectric strike by fitting the seven‐parameter model on a frequency‐by‐frequency and site‐by‐site basis independently. Although this approach has the attraction that one gains a more intimate understanding of the data set, it is rather time‐consuming and requires repetitive application. We propose an extension to Groom‐Bailey decomposition in which a global minimum is sought to determine the most appropriate strike direction and telluric distortion parameters for a range of frequencies and a set of sites. Also, we show how an analytically‐derived approximate Hessian of the objective function can reduce the required computing time. We illustrate application of the analysis to two synthetic data sets and to real data. Finally, we show how the analysis can be extended to cover the case of frequency‐dependent distortion caused by the magnetic effects of the galvanic charges.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. E301-E315 ◽  
Author(s):  
Thomas Kalscheuer ◽  
Juliane Hübert ◽  
Alexey Kuvshinov ◽  
Tobias Lochbühler ◽  
Laust B. Pedersen

Magnetotelluric (MT), radiomagnetotelluric (RMT), and, in particular, controlled-source audiomagnetotelluric (CSAMT) data are often heavily distorted by near-surface inhomogeneities. We developed a novel scheme to invert MT, RMT, and CSAMT data in the form of scalar or tensorial impedances and vertical magnetic transfer functions simultaneously for layer resistivities and electric and magnetic galvanic distortion parameters. The inversion scheme uses smoothness constraints to regularize layer resistivities and either Marquardt-Levenberg damping or the minimum-solution length criterion to regularize distortion parameters. A depth of investigation range is estimated by comparing layered model sections derived from first- and second-order smoothness constraints. Synthetic examples demonstrate that earth models are reconstructed properly for distorted and undistorted tensorial CSAMT data. In the inversion of scalar CSAMT data, such as the determinant impedance or individual tensor elements, the reduced number of transfer functions inevitably leads to increased ambiguity for distortion parameters. As a consequence of this ambiguity for scalar data, distortion parameters often grow over the iterations to unrealistic absolute values when regularized with the Marquardt-Levenberg scheme. Essentially, compensating relationships between terms containing electric and/or magnetic distortion are used in this growth. In a regularization with the minimum solution length criterion, the distortion parameters converge into a stable configuration after several iterations and attain reasonable values. The inversion algorithm was applied to a CSAMT field data set collected along a profile over a tunnel construction site at Hallandsåsen, Sweden. To avoid erroneous inverse models from strong anthropogenic effects on the data, two scalar transfer functions (one scalar impedance and one scalar vertical magnetic transfer function) were selected for inversion. Compared with a regularization of distortion parameters with the Marquardt-Levenberg method, the minimum-solution length criterion yielded smaller absolute values of distortion parameters and a horizontally more homogeneous distribution of electrical conductivity.


2020 ◽  
Vol 223 (3) ◽  
pp. 1565-1583
Author(s):  
Hoël Seillé ◽  
Gerhard Visser

SUMMARY Bayesian inversion of magnetotelluric (MT) data is a powerful but computationally expensive approach to estimate the subsurface electrical conductivity distribution and associated uncertainty. Approximating the Earth subsurface with 1-D physics considerably speeds-up calculation of the forward problem, making the Bayesian approach tractable, but can lead to biased results when the assumption is violated. We propose a methodology to quantitatively compensate for the bias caused by the 1-D Earth assumption within a 1-D trans-dimensional Markov chain Monte Carlo sampler. Our approach determines site-specific likelihood functions which are calculated using a dimensionality discrepancy error model derived by a machine learning algorithm trained on a set of synthetic 3-D conductivity training images. This is achieved by exploiting known geometrical dimensional properties of the MT phase tensor. A complex synthetic model which mimics a sedimentary basin environment is used to illustrate the ability of our workflow to reliably estimate uncertainty in the inversion results, even in presence of strong 2-D and 3-D effects. Using this dimensionality discrepancy error model we demonstrate that on this synthetic data set the use of our workflow performs better in 80 per cent of the cases compared to the existing practice of using constant errors. Finally, our workflow is benchmarked against real data acquired in Queensland, Australia, and shows its ability to detect the depth to basement accurately.


Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 496-518 ◽  
Author(s):  
R. W. Groom ◽  
R. C. Bailey

An outcropping hemispherical inhomogeneity embedded in a two‐dimensional (2-D) earth is used to model the effects of three‐dimensional (3-D) near‐surface electromagnetic (EM) “static” distortion. Analytical solutions are first derived for the galvanic electric and magnetic scattering operators of the heterogeneity. To represent the local distortion by 3-D structures of fields which were produced by a large‐scale 2-D structure, these 3-D scattering operators are applied to 2-D electric and magnetic fields derived by numerical modeling to synthesize an MT data set. Synthetic noise is also included in the data. These synthetic data are used to study the parameters recovered by several published methods for decomposing or parameterizing the measured MT impedance tensor. The stability of these parameters in the presence of noise is also examined. The parameterizations studied include the conventional 2-D parameterization (Swift, 1967), Eggers’s (1982) and Spitz’s (1985) eigenstate formulations, LaTorraca et al.’s (1986) SVD decomposition, and the Groom and Bailey (1989) method designed specifically for 3-D galvanic electric scattering. The relationships between the impedance or eigenvalue estimates of each method and the true regional impedances are examined, as are the azimuthal (e.g., regional 2-D strike, eigenvector orientation and local strike) and ellipticity parameters. The 3-D structure causes the conventional 2-D estimates of impedances to be site‐dependent mixtures of the regional impedance responses, with the strike estimate being strongly determined by the orientation of the local current. For strong 3-D electric scattering, the local current polarization azimuth is mainly determined by the local 3-D scattering rather than the regional currents. There are strong similarities among the 2-D rotation estimates of impedance and the eigenvalue estimates of impedance both by Eggers’s and Spitz’s first parameterization as well as the characteristic values of LaTorraca et al. There are striking similarities among the conventional estimate of strike, the orientations given by the Eggers’s, Spitz’s (Q), and LaTorraca et al.’s decompositions, as well as the estimate of local current polarization azimuth given by Groom and Bailey. It was found that one of the ellipticities of Eggers, LaTorraca et al., and Spitz is identically zero for all sites and all periods, indicating that one eigenvalue or characteristic value is linearly polarized. There is strong evidence that this eigenvalue is related to the local current. For these three methods, the other ellipticity differs from zero only when there are significant differences in the phases of the regional 2-D impedances (i.e., strong 2-D inductive effects), implying the second ellipticity indicates a multidimensional inductive response. Spitz’s second parameterization (U), and the Groom and Bailey decomposition, were able to recover information regarding the actual regional 2-D strike and the separate character of the 2-D regional impedances. Unconstrained, both methods can suffer from noise in their ability to resolve structural information especially when the current distortion causes the impedance tensor to be approximately singular. The method of Groom and Bailey, designed specifically for quantifying the fit of the measured tensors to the physics of the parameterization, constraining a model, and resolving parameters, can recover much of the information in the two regional impedances and some information about the local structure.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. E255-E268 ◽  
Author(s):  
Sihong Zeng ◽  
Xiangyun Hu ◽  
Jianhui Li ◽  
Colin G. Farquharson ◽  
Peter C. Wood ◽  
...  

In transient electromagnetic (TEM) methods, the full transmitting-current waveform, not just the abrupt turn-off, can have effects on the measured responses. A 3D finite-element time-domain forward-modeling solver was used to investigate these effects. This was motivated by an attempt to match, via forward-modeling, real data from the Albany graphite deposit in northern Ontario, Canada. Initial modeling results for homogeneous half-spaces illustrate the effects that a full waveform can have on TEM responses, especially the durations of the steady stage and turn-off time. For the Albany data set, a geophysical conductivity model was developed from a geologic model that itself had been constructed predominantly from drillhole information. The conductivities of the various geologic units in the model were first estimated based on typical conductivity values for the respective rock types, then adjusted to fit the measured TEM data as closely as possible. We found that the TEM responses differed significantly from the pure step-off response and that incorporating the effects of the full waveform (particularly the linear ramp turn-off) greatly improved the match between observed and computed responses, especially for the early measurement times. In addition, this Albany example illustrates the presence of sign changes in TEM data caused primarily by localized conductivity targets.


2019 ◽  
Vol 218 (3) ◽  
pp. 1873-1891 ◽  
Author(s):  
Farbod Khosro Anjom ◽  
Daniela Teodor ◽  
Cesare Comina ◽  
Romain Brossier ◽  
Jean Virieux ◽  
...  

SUMMARY The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of P-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.


Geophysics ◽  
1990 ◽  
Vol 55 (9) ◽  
pp. 1242-1250 ◽  
Author(s):  
Louise Pellerin ◽  
Gerald W. Hohmann

Surficial bodies can severely distort magnetotelluric (MT) apparent resistivity data to arbitrarily low frequencies. This distortion, known as the MT static shift, is due to an electric field generated from boundary charges on surficial inhomogeneities, and persists throughout the entire MT recording range. Static shifts are manifested in the data as vertical, parallel shifts of log‐log apparent resistivity sounding curves, the impedance phase being unaffected. Using a three‐dimensional (3-D) numerical modeling algorithm, simulated MT data with finite length electrode arrays are generated. Significant static shifts are produced in this simulation; however, for some geometries they are impossible to identify. Techniques such as spatial averaging and electromagnetic array profiling (EMAP) are effective in removing static shifts, but they are expensive, especially for correcting a previously collected MT data set. Parametric representation and use of a single invariant quantity, such as the impedance tensor determinant, are only useful in limited circumstances and can lead the MT interpreter astray. Transient electromagnetic (TEM) sounding data are relatively inexpensive to collect, do not involve electric field measurements, and are only affected at very early times by surficial bodies. Hence, using TEM data acquired at the same location provides a natural remedy for the MT static shift. We describe a correction scheme to shift distorted MT curves to their correct values based on 1-D inversion of a TEM sounding taken at the same location as the MT site. From this estimated 1-D resistivity structure an MT sounding is computed at frequencies on the order of 1 Hz and higher. The observed MT curves are then shifted to the position of the computed curve, thus eliminating static shifts. This scheme is accurate when the overlap region between the MT and TEM sounding is 1-D, but helpful information can be gleaned even in multidimensional environments. Other advantages of this scheme are that it is straightforward to ascertain if the correction scheme is being accurately applied and it is easy to implement on a personal computer.


2019 ◽  
Vol 220 (1) ◽  
pp. 541-567 ◽  
Author(s):  
Benjamin Lee ◽  
Martyn Unsworth ◽  
Knútur Árnason ◽  
Darcy Cordell

SUMMARY Krafla is an active volcanic field and a high-temperature geothermal system in northeast Iceland. As part of a program to produce more energy from higher temperature wells, the IDDP-1 well was drilled in 2009 to reach supercritical fluid conditions below the Krafla geothermal field. However, drilling ended prematurely when the well unexpectedly encountered rhyolite magma at a depth of 2.1 km. In this paper we re-examine the magnetotelluric (MT) data that were used to model the electrical resistivity structure at Krafla. We present a new 3-D resistivity model that differs from previous inversions due to (1) using the full impedance tensor data and (2) a finely discretized mesh with horizontal cell dimensions of 100 m by 100 m. We obtained similar resistivity models from using two different prior models: a uniform half-space, and a previously published 1-D resistivity model. Our model contains a near-surface resistive layer of unaltered basalt and a low resistivity layer of hydrothermal alteration (C1). A resistive region (R1) at 1 to 2 km depth corresponds to chlorite-epidote alteration minerals that are stable at temperatures of about 220 to 500 °C. A low resistivity feature (C2) coincides with the Hveragil fault system, a zone of increased permeability allowing interaction of aquifer fluids with magmatic fluids and gases. Our model contains a large, low resistivity zone (C3) below the northern half of the Krafla volcanic field that domes upward to a depth of about 1.6 km b.s.l. C3 is partially coincident with reported low S-wave velocity zones which could be due to partial melt or aqueous fluids. The low resistivity could also be attributed to dehydration and decomposition of chlorite and epidote that occurs above 500 °C. As opposed to previously published resistivity models, our resistivity model shows that IDDP-1 encountered rhyolite magma near the upper edge of C3, where it intersects C2. In order to assess the sensitivity of the MT data to melt at the bottom of IDDP-1, we added hypothetical magma bodies with resistivities of 0.1 to 30 Ωm to our resistivity model and compared the synthetic MT data to the original inversion response. We used two methods to compare the MT data fit: (1) the change in r.m.s. misfit and (2) an asymptotic p-value obtained from the Kolmogorov–Smirnov (K–S) statistical test on the two sets of data residuals. We determined that the MT data can only detect sills that are unrealistically large (2.25 km3) with very low resistivities (0.1 or 0.3 Ωm). Smaller magma bodies (0.125 and 1 km3) were not detected; thus the MT data are not sensitive to small rhyolite magma bodies near the bottom of IDDP-1. Our tests gave similar results when evaluating the changes in r.m.s. misfit and the K–S test p-values, but the K–S test is a more objective method than appraising a relative change in r.m.s. misfit. Our resistivity model and resolution tests are consistent with the idea of rhyolite melt forming by re-melting of hydrothermally altered basalt on the edges of a deeper magma body.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. E335-E346
Author(s):  
Lutz Mütschard ◽  
Ketil Hokstad ◽  
Torgeir Wiik ◽  
Bjørn Ursin

The measured electromagnetic field in magnetotellurics (MT) is composed of the natural source field and its subsurface response. Commonly, the data are represented as impedances, the complex ratio between the horizontal electric and magnetic fields. This measure is independent of the source distribution because the impedance-tensor estimation contains a deconvolution operator. We have used a Gauss-Newton-type 3D MT inversion scheme to compare impedance-data inversion with an inversion using the recorded electric field directly. The use of the observed electric field is beneficial to the inversion algorithm because it simplifies the estimation of the sensitivities. The direct-field approach permits the use of the observed data without processing, but it presumes knowledge of the source distribution. A method to estimate the time-variable strength and polarization of the incoming plane-wave source is presented and tested on synthetic and real-data examples. The direct-field inversion is successfully applied to a synthetic and a real data set within marine settings. A comparison with the conventional impedance inversion is conducted. The results of the synthetic data example are very similar, with a slightly more accurate reconstruction of the model in the impedance case, whereas the direct-field inversion produces a smoother inversion result when compared with the impedance case. The mapping of a resistive salt structure in the real-data example indicates deviations in the final conductivity models. The impedance inversion suggests a deeper rooted resistive structure, whereas the direct-field inversion predicts a more compact structure limited to the overburden. We have evaluated the advantages of the new approach like the simplification of the sensitivity calculation, limitations, and disadvantages like knowledge of the source distribution.


Sign in / Sign up

Export Citation Format

Share Document