scholarly journals New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data

2020 ◽  
Vol 224 (2) ◽  
pp. 1422-1428
Author(s):  
M-A Dumais ◽  
L Gernigon ◽  
O Olesen ◽  
S E Johansen ◽  
M Brönner

SUMMARY Insights into the spreading evolution of the Knipovich Ridge and development of the Fram Strait are revealed from a recent aeromagnetic survey. As an ultraslow spreading ridge in an oblique system located between the Svalbard–Barents Sea and the Northeast Greenland rifted margins, the dynamics of the Knipovich Ridge opening has long been debated. Its 90° bend with the Mohns Ridge, rare in plate tectonics, affects the evolution of the Fram Strait and motivates the study of crustal deformation with this distinctive configuration. We identified magnetic isochrons on either side of the present-day Knipovich Ridge. These magnetic observations considerably reduce the mapped extent of the oceanic domain and question the present understanding of the conjugate rifted margins. Our analysis reveals a failed spreading system before a major spreading reorganization of the Fram Strait gateway around magnetic chron C6 (circa 20 Ma).

2019 ◽  
Vol 168 ◽  
pp. 102890
Author(s):  
Victoria Bonath ◽  
Tommy Edeskär ◽  
Nina Lintzén ◽  
Lennart Fransson ◽  
Andrzej Cwirzen

Geology ◽  
2020 ◽  
Author(s):  
Xianqing Jing ◽  
David A.D. Evans ◽  
Zhenyu Yang ◽  
Yabo Tong ◽  
Yingchao Xu ◽  
...  

Disentangling records of Rodinia fragmentation and true polar wander remains a challenge for understanding late Tonian plate tectonics. The ca. 760 Ma lower member of the Liántuó Formation, South China, yields a primary paleomagnetic remanence that passes both the fold and reversal tests. This new result and recently reported ca. 800 Ma data from elsewhere in South China suggest a new interpretation of its apparent polar wander path, whereby pre–770 Ma poles have inverted absolute polarity relative to traditional interpretations. Based on this inversion, and an interpretation of several oscillations of true polar wander documented by global data during 810–760 Ma, we propose a novel reconstruction for Rodinia and its breakup. Our reconstruction places the South China, India, and Kalahari cratons to the southwest of Laurentia, with connections that might have been established as early as ca. 1000 Ma. Our model also suggests that initial rifting of Rodinia occurred at ca. 800 Ma via fast northward motion of the India craton and South China.


2020 ◽  
Author(s):  
Léon Chafik ◽  
Sara Broomé

<p>The Arctic Ocean has been receiving more of the warm and saline Atlantic Water in the past decades. This water mass enters the Arctic Ocean via two Arctic gateways: the Barents Sea Opening and the Fram Strait. Here, we focus on the fractionation of Atlantic Water at these two gateways using a Lagrangian approach based on satellite-derived geostrophic velocities. Simulated particles are released at 70N at the inner and outer branch of the North Atlantic current system in the Nordic Seas. The trajectories toward the Fram Strait and Barents Sea Opening are found to be largely steered by the bottom topography and there is an indication of an anti-phase relationship in the number of particles reaching the gateways. There is, however, a significant cross-over of particles from the outer branch to the inner branch and into the Barents Sea, which is found to be related to high eddy kinetic energy between the branches. This cross-over may be important for Arctic climate variability.</p>


Geology ◽  
2006 ◽  
Vol 34 (7) ◽  
pp. 605 ◽  
Author(s):  
Mathilde Cannat ◽  
Daniel Sauter ◽  
Véronique Mendel ◽  
Etienne Ruellan ◽  
Kyoko Okino ◽  
...  

2003 ◽  
Vol 60 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Jochen Knies ◽  
Christoph Vogt

AbstractImproved multiparameter records from the northern Barents Sea margin show two prominent freshwater pulses into the Arctic Ocean during MIS 5 that significantly disturbed the regional oceanic regime and probably affected global climate. Both pulses are associated with major iceberg-rafted debris (IRD) events, revealing intensive iceberg/sea ice melting. The older meltwater pulse occurred near the MIS 5/6 boundary (∼131,000 yr ago); its ∼2000 year duration and high IRD input accompanied by high illite content suggest a collapse of large-scale Saalian Glaciation in the Arctic Ocean. Movement of this meltwater with the Transpolar Drift current into the Fram Strait probably promoted freshening of Nordic Seas surface water, which may have increased sea-ice formation and significantly reduced deep-water formation. A second pulse of freshwater occurred within MIS 5a (∼77,000 yr ago); its high smectite content and relatively short duration is possibly consistent with sudden discharge of Early Weichselian ice-dammed lakes in northern Siberia as suggested by terrestrial glacial geologic data. The influence of this MIS 5a meltwater pulse has been observed at a number of sites along the Transpolar Drift, through Fram Strait, and into the Nordic Seas; it may well have been a trigger for the North Atlantic cooling event C20.


2021 ◽  
Author(s):  
Hiroshi Sumata ◽  
Laura de Steur ◽  
Dmitry Divine ◽  
Olga Pavlova ◽  
Sebastian Gerland

<p><span><span>Fram Strait is the major gateway connecting the Arctic Ocean and the northern North Atlantic Ocean where about 80 to 90% of sea ice outflow from the Arctic Ocean takes place. Long-term observations from the Fram Strait Arctic Outflow Observatory maintained by the Norwegian Polar Institute captured an unprecedented decline<!-- should we somehow add information that this statement is limited to the time since the early 1990s? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:45): "..." I slightly modified the sentence to mention this. --> of sea ice thickness in 2017 – 2018 since comprehensive observations started in the early 1990s. Four Ice Profiling Sonars moored in the East Greenland Current in Fram Strait simultaneously recorded 50 – 70 cm decline of annual mean ice thickness in comparison with preceding years. A backward trajectory analysis revealed that the decline was attributed to an anomalous sea level pressure pattern from 2017 autumn to 2018 summer. Southerly wind associated with a dipole pressure anomaly between Greenland and the Barents Sea prevented southward motion of ice floes north of Fram Strait. Hence ice pack was exposed to warm Atlantic Water in the north of Fram Strait 2 – 3 times longer than the average year, allowing more melt <!-- should also slower freezing or reduced freezing rates mentioned here during winter and spring (in addition to melt in summer and autumn)? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:46): "..." I would like to keep this sentence as it is, since the analysis implies sea ice melt occurred in the vicinity of Fram Strait in winter (probably due to ocean heat flux), though we don’t have direct measurements of 2018 event. This could be an interesting implications of this study, and seeds for further investigation. -->to happen. At the same time, the dipole anomaly was responsible for the slowest observed annual mean ice drift speed in Fram Strait in the last two decades. As a consequence of the record minimum of ice thickness and the slowest drift speed, the sea ice volume transport through the Fram Strait dropped by more than 50% in comparison with the 2010 – 2017 average.</span></span></p>


Sign in / Sign up

Export Citation Format

Share Document