Dynamic streaming potential coupling coefficient in porous media with different pore size distributions

Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Santiago G Solazzi ◽  
Nguyen Van Nghia ◽  
Phan Van Do

Summary Seismoelectric signals are generated by electrokinetic coupling from seismic wave propagation in fluid-filled porous media. This process is directly related to the existence of an electrical double layer at the interface between the pore fluid and minerals composing the pore walls. The seismoelectric method attracts the interest of researchers in different areas, from oil and gas reservoir characterization to hydrogeophysics, due to the sensitivity of the seismoelectric signals to medium and fluid properties. In this work, we propose a physically-based model for the dynamic streaming potential coupling coefficient (SPCC) by conceptualizing a porous medium as a bundle of tortuous capillaries characterized by presenting different pore size distributions (PSD). The results show that the dynamic streaming potential coupling coefficient is a complex function depending on the properties of pore fluid, mineral-pore fluid interfaces, microstructural parameters of porous media and frequency. Parameters influencing the dynamic SPCC are investigated and explained. In particular, we show that the PSD affects the transition frequency as well as the shape of the SPCC response as a function of frequency. The proposed model is then compared with published data and previous models. It is found that the approach using the lognormal distribution is in very good agreement with experimental data as well as with previous models. Conversely, the approach that uses the fractal distribution provides a good match with published data for sandstone samples but not for sand samples. This result implies that the fractal PSD may not be pertinent for the considered sand samples, which exhibit a relatively narrow distribution of pore sizes. Our proposed approach can work for any PSD, for example, including complex ones such as double porosity or inferred from direct measurements. This makes the proposed models more versatile than models available in literature.

Author(s):  
Aimad Oukhlef ◽  
Abdlehak Ambari ◽  
Ste´phane Champmartin ◽  
Antoine Despeyroux

In this paper a new method is presented in order to determine the pore size distribution in a porous media. This original technique uses the non Newtonian yield-pseudo-plastic rheological properties of some fluid flowing through the porous sample. In a first approximation, the very well-known and simple Carman-Kozeny model for porous media is considered. However, despite the use of such a huge simplification, the analysis of the geometry still remains an interesting problem. Then, the pore size distribution can be obtained from the measurement of the total flow rate as a function of the imposed pressure gradient. Using some yield-pseudo-plastic fluid, the mathematical processing of experimental data should give an insight of the pore-size distribution of the studied porous material. The present technique was successfully tested analytically and numerically for classical pore size distributions such as the Gaussian and the bimodal distributions using Bingham or Casson fluids (the technique was also successfully extended to Herschel-Bulkley fluids but the results are not presented in this paper). The simplicity and the cheapness of this method are also its assets.


Fractals ◽  
2006 ◽  
Vol 14 (03) ◽  
pp. 171-177 ◽  
Author(s):  
BIN ZHANG ◽  
BOMING YU ◽  
HAIXIA WANG ◽  
MEIJUAN YUN

A fractal analysis of permeability for power-law fluids in porous media is presented based on the fractal characters of pore size distributions and tortuous flow paths/streamlines in the media. The proposed permeability model for power-law fluids in porous media is expressed as a function of the fractal dimensions of pore size distributions and tortuous flow paths/streamlines, porosity and microstructural parameters, as well as power exponent, and there is no empirical constant in the proposed model and every parameter in the model has clear physical meaning. The results predicted by the present fractal permeability model show that the model predictions (as the power exponent is 1) are in agreement with the available experimental data, and the predicted permeabilities (as the power exponent is not equal to 1) increase with the power exponent, which is also consistent with the physical situation.


1995 ◽  
Vol 112 (1) ◽  
pp. 83-91 ◽  
Author(s):  
L.L. Latour ◽  
R.L. Kleinberg ◽  
P.P. Mitra ◽  
C.H. Sotak

2020 ◽  
Author(s):  
Scott C. Hauswirth ◽  
◽  
Majdi Abou Najm ◽  
Christelle Basset

Sign in / Sign up

Export Citation Format

Share Document