scholarly journals Erratum: Present-dayd dynamic topography and lower mantle structure from paleogeographically-constrained mantle flow models

2019 ◽  
Vol 217 (2) ◽  
pp. 1433-1433
Author(s):  
Nicolas Flament
2021 ◽  
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Ömer Bodur ◽  
Dietmar Müller

<p>The relationships between plate motions and basal mantle structure remain poorly understood, with some models implying that the basal mantle structure has remained stable over time, while others suggest that it could be shaped by the aggregation and dispersal of supercontinents. Here we investigate the plate-basal mantle relationship through 1) building a series of end-member plate tectonic models over one billion years, and 2) creating mantle flow models assimilated by those plate models. To achieve that, we build synthetic plate tectonic models dating from 1 Ga to 250 Ma that we connect to an existing palaeogeographical plate reconstruction from 250 Ma to create a relative plate motion model for the last 1 Gyr, in which supercontinent breakup and reassembly occur via introversion. We consider three distinct reference frames that result in different net lithospheric rotation. We find that the flow models predict a dominant degree-2 lower mantle structure most of the time and that they are in first-order agreement (~70% spatial match) with tomographic models. Model thermochemical structures at the base of the mantle may split into smaller structures when slabs sink onto them, and smaller basal structures may merge into larger ones as a result of slab pushing. The basal thermochemical structure under the superocean is large and continuous, whereas the basal thermochemical structure under the supercontinent is smaller and progressively assembles during and shortly after supercontinent assembly. In the models, plumes also develop preferentially along the edge of the basal thermochemical structures and tend to migrate towards the interior of basal structures over time as they interact with the slabs. Lone plumes can also form away from the main thermochemical structures, often within a small network of sinking slabs. Lone plumes may migrate between basal structures. We analyse the relationship between imposed tectonic velocities and deep mantle flow, and find that at spherical harmonic degree 2, the maxima of lower mantle radial flow and temperature follow the motion path of the maxima of surface divergence. It may take ~160-240 Myr for lower mantle structure to reflect plate motion changes when the lower mantle is reorganised by slabs sinking onto basal thermochemical structures, and/or when slabs stagnate in the transition zone before sinking to the lower mantle. Basal thermochemical structures move at less than 0.6 °/Myr in our models with a temporal average of 0.16 °/Myr when there is no net lithospheric rotation, and between 0.20-0.23 °/Myr when net lithospheric rotation exists and is induced to the lower mantle. Our results suggest that basal thermochemical structures are not stationary, but rather linked to global plate motions and plate boundary reconfigurations, reflecting the dynamic nature of the co-evolving plate-mantle system.</p>


2020 ◽  
Author(s):  
Qunfan Zheng ◽  
Huai Zhang

<p>East Asia is a tectonically active area on earth and has a complicated lithospheric deformation due to the western Indo-Asian continental collision and the eastern oceanic subduction mainly from Pacific plate. Till now, mantle dynamics beneath this area is not well understood due to its complex mantle structure, especially in the framework of global spherical mantle convection. Hence, a series of numerical models are conducted in this study to reveal the key controlling parameters in shaping the present-day observed mantle structure beneath East Asia under 3-D global mantle flow models. Global mantle flow models with coarse mesh are firstly applied to give a rough constraint on global mantle convection. The detailed description of upper mantle dynamics of East Asia is left with regional refined mesh. A power-law rheology and absolute plate field are applied subsequently to get a better constraint on the related regional mantle rheological structure and surficial boundary conditions. Thus, the refined and reasonable velocity and stress distributions of upper mantle beneath East Asia at different depths are retrieved based on our 3-D global mantle flow simulations. The derived large shallow mantle flow beneath the Tibetan Plateau causes significant lithospheric shear drag and dynamic topography that result in prominent tectonic evolution of this area. And the Indo–Asian collision may have induced mantle flow beneath the Indian plate and the different velocity structures between the asthenosphere and lithosphere indicate the shear drag of asthenospheric mantle. That may explain the reason that Indo–Asian collision has occurred for 50 Ma, and this collision can still continue to accelerate uplift in the Tibetan plateau. Finally, we also consider the possible implementations of 3-D numerical simulations combined with global lithosphere and deep mantle dynamics so as to discuss the relevant influences.</p>


2020 ◽  
Author(s):  
Sia Ghelichkhan ◽  
Hans-Peter Bunge

<div> <div> <div> <p>The adjoint method is an efficient way to obtain gradient information in a mantle convection model relative to past flow structure, allowing one to retrodict mantle flow from observations of the present-day mantle state. While adjoint equations for isochemical mantle flow have been derived for both incompressible and compressible flows, here we extend the method to thermochemical mantle flow models, and present thermochemical adjoint equations in the elastic-liquid approximation. We verify the method with twin experiments, and retrodict the flow history of a thermochemical reference model (reference twin) assuming for the final state, either a consistent thermochemical interpretation, using the thermochemical adjoint equations, or an inconsistent purely thermal interpretation, using the isochemical adjoint equations. The consistent simulation correctly retrodicts the flow evolution of the reference twin. The inconsistent case, instead, restores a false flow history whereby internal buoyancy forces and convectively maintained topography are overestimated. Because the cost function is reduced in either case, our results suggest that the adjoint method can be used to link assumptions on the role of chemical mantle heterogeneity to geologic inferences of dynamic topography, thus providing additional means to test hypotheses on mantle composition and dynamics.</p> </div> </div> </div>


Author(s):  
S. Ghelichkhan ◽  
H-.P. Bunge

The adjoint method is an efficient way to obtain gradient information in a mantle convection model relative to past flow structure, allowing one to retrodict mantle flow from observations of the present-day mantle state. While adjoint equations for isochemical mantle flow have been derived for both incompressible and compressible flows, here we extend the method to thermochemical mantle flow models, and present thermochemical adjoint equations in the elastic-liquid approximation. We verify the method with twin experiments, and retrodict the flow history of a thermochemical reference model (reference twin) assuming for the final state, either a consistent thermochemical interpretation, using the thermochemical adjoint equations, or an inconsistent purely thermal interpretation, using the isochemical adjoint equations. The consistent simulation correctly retrodicts the flow evolution of the reference twin. The inconsistent case, instead, restores a false flow history whereby internal buoyancy forces and convectively maintained topography are overestimated. Because the cost function is reduced in either case, our results suggest that the adjoint method can be used to link assumptions on the role of chemical mantle heterogeneity to geologic inferences of dynamic topography, thus providing additional means to test hypotheses on mantle composition and dynamics.


2020 ◽  
Vol 224 (2) ◽  
pp. 961-972
Author(s):  
A G Semple ◽  
A Lenardic

SUMMARY Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.


2021 ◽  
Author(s):  
David Schlaphorst ◽  
Graça Silveira ◽  
João Mata ◽  
Frank Krüger ◽  
Torsten Dahm ◽  
...  

<p>The Madeira and Canary archipelagos, located in the eastern North Atlantic, are two of many examples of hotspot surface expressions, but a better understanding of the crust and upper mantle structure beneath these regions is needed to investigate their structure in more detail. With the study of seismic anisotropy, it is possible to assess the rheology and structure of asthenosphere and lithosphere that can reflect a combination of mantle and crustal contributions.</p><p>Here, as part of the SIGHT project (SeIsmic and Geochemical constraints on the Madeira HoTspot), we present the first detailed study of seismic anisotropy beneath both archipelagos, using data collected from over 60 local three-component seismic land stations. Basing our observations on both teleseismic SKS and local S splitting, we are able to distinguish between multiple layers of anisotropy. We observe significant changes in delay time and fast shear-wave orientation patterns on short length-scales on the order of tens of kilometres beneath the western Canary Islands and Madeira Island. In contrast, the eastern Canary Islands and Porto Santo the pattern is much more uniform. The detected delay time increase and more complex orientation patterns beneath the western Canary Islands and Madeira can be attributed to mantle flow disturbed and diverted on small-length scales by a strong vertical component. This is a clear indication of the existence of a plume at each of those archipelagos, nowadays exerting a strong influence on the western and younger islands. We therefore conclude that a plume-like feature beneath Madeira exists in a similar way to the Canary Island hotspot and that regional mantle flow models for the region should be reassessed.</p><p>This is a contribution to project SIGHT (Ref. PTDC/CTA-GEF/30264/2017). The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.</p>


Solid Earth ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 2167-2178 ◽  
Author(s):  
Ömer F. Bodur ◽  
Patrice F. Rey

Abstract. Much effort is being made to extract the dynamic components of the Earth's topography driven by density heterogeneities in the mantle. Seismically mapped density anomalies have been used as an input into mantle convection models to predict the present-day mantle flow and stresses applied on the Earth's surface, resulting in dynamic topography. However, mantle convection models give dynamic topography amplitudes generally larger by a factor of ∼2, depending on the flow wavelength, compared to dynamic topography amplitudes obtained by removing the isostatically compensated topography from the Earth's topography. In this paper, we use 3-D numerical experiments to evaluate the extent to which the dynamic topography depends on mantle rheology. We calculate the amplitude of instantaneous dynamic topography induced by the motion of a small spherical density anomaly (∼100 km radius) embedded into the mantle. Our experiments show that, at relatively short wavelengths (<1000 km), the amplitude of dynamic topography, in the case of non-Newtonian mantle rheology, is reduced by a factor of ∼2 compared to isoviscous rheology. This is explained by the formation of a low-viscosity channel beneath the lithosphere and a decrease in thickness of the mechanical lithosphere due to induced local reduction in viscosity. The latter is often neglected in global mantle convection models. Although our results are strictly valid for flow wavelengths less than 1000 km, we note that in non-Newtonian rheology all wavelengths are coupled, and the dynamic topography at long wavelengths will be influenced.


Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Vadim Levin ◽  
Stephen Elkington ◽  
James Bourke ◽  
Ivonne Arroyo ◽  
Lepolt Linkimer

Abstract Surrounded by subducting slabs and continental keels, the upper mantle of the Pacific is largely prevented from mixing with surrounding areas. One possible outlet is beneath the southern part of the Central American isthmus, where regional observations of seismic anisotropy, temporal changes in isotopic composition of volcanic eruptions, and considerations of dynamic topography all suggest upper mantle flow from the Pacific to the Caribbean. We derive new constraints on the nature of seismic anisotropy in the upper mantle of southern Costa Rica from observations of birefringence in teleseismic shear waves. Fast and slow components separate by ∼1 s, with faster waves polarized along the 40°–50° (northeast) direction, near-orthogonally to the Central American convergent margin. Our results are consistent with upper mantle flow from the Pacific to the Caribbean and require an opening in the lithosphere subducting under the region.


Sign in / Sign up

Export Citation Format

Share Document