scholarly journals Immunocytochemical Localization of the Menkes Copper Transport Protein (ATP7A) to the Trans-Golgi Network

1997 ◽  
Vol 6 (3) ◽  
pp. 409-416 ◽  
Author(s):  
Herman A. Dierick ◽  
Ayla N. Adam ◽  
June F. Escara-Wilke ◽  
Thomas W. Glover

Abstract We have generated polyclonal antibodies against the amino-terminal third of the Menkes protein (ATP7A; MNK) by immunizing rabbits with a histidine-tagged MNK fusion construct containing metal-binding domains 1–4. The purified antibodies were used in Western analysis of cell lysates and in indirect immunofluorescence experiments on cultured cells. On Western blots, the antibodies recognized the ∼165 kDa MNK protein in CHO cells and human fibroblasts. No MNK signal could be detected in fibroblasts from a patient with Menkes disease or in Hep3B hepatocellular carcinoma cells, confirming the specificity of the antibodies. Immunocytochemical analysis of CHO cells and human fibroblasts showed a distinct perinuclear signal corresponding to the pattern of the Golgi complex. This staining pattern was similar to that of α-mannosidase II which is a known resident enzyme of the Golgi complex. Using brefeldin A, a fungal inhibitor of protein secretion, we further demonstrated that the MNK protein is localized to the trans-Golgi network. This data provides direct evidence for a subcellular localization of the MNK protein which is similar to the proposed vacuolar localization of Ccc2p, the yeast homolog of MNK and WND (ATP7B), the Wilson disease gene product. In light of the proposed role of MNK both in subcellular copper trafficking and in copper efflux, these data suggest a model for how these two processes are linked and represent an important step in the functional analysis of the MNK protein.

1995 ◽  
Vol 270 (15) ◽  
pp. 8815-8821 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Dirk-Jan E. Opstelten ◽  
Maria Ericsson ◽  
Marian C. Horzinek ◽  
Peter J. M. Rottier

2002 ◽  
Vol 283 (6) ◽  
pp. F1422-F1429 ◽  
Author(s):  
Ruben M. Sandoval ◽  
Robert L. Bacallao ◽  
Kenneth W. Dunn ◽  
Jeffrey D. Leiser ◽  
Bruce A. Molitoris

Having shown rapid trafficking of aminoglycosides to the Golgi complex in cell culture, we focused on the injurious interaction that occurs when gentamicin administration is preceded by renal ischemia. Using Texas red-labeled gentamicin as a tracer, we determined that 15 min of cellular nucleotide depletion did not significantly increase subsequent uptake. However, cells previously depleted of nucleotides accumulated significantly more Texas red-labeled gentamicin within a dispersed Golgi complex. Using Ricinus communis and Lens culinaris lectins, which label specific compartments of the Golgi complex ( trans-Golgi network/ trans and medial/ cis compartments, respectively), we determined that the medial/ cis compartment dispersed after 15 min of nucleotide depletion but the trans-Golgi network/ trans compartment remained unaffected. An increase in the number of cells exhibiting disrupted medial/ cis-Golgi morphology after repletion in physiological media containing gentamicin was also seen. In summary, the increase in nephrotoxicity seen when ischemia precedes aminoglycoside uptake may be part of a complex mechanism initially involving increased Golgi accumulation and prolonged Golgi dispersion. The Golgi complex must then endure the effects of gentamicin accumulated in larger quantities in an aberrant physiological state.


2000 ◽  
Vol 113 (11) ◽  
pp. 2047-2054
Author(s):  
F.K. Gyoeva ◽  
E.M. Bybikova ◽  
A.A. Minin

Conventional kinesin is a motor protein implicated in the transport of a variety of cytoplasmic organelles along microtubules. The kinesin molecule consists of two heavy chains with motor domains at their amino termini and two light chains, which, together with the carboxyl termini of the heavy chains, are proposed to mediate binding to cargoes. Since the light chains are represented by multiple isoforms diverging at their carboxyl termini they are presumed to specify kinesin targeting to organelles. Previously, we isolated five cDNAs, encoding hamster kinesin light chain isoforms, and found that one of them (B or C) preferentially associated with mitochondria. To obtain additional evidence proving the specific location of various kinesin light chain isoforms on organelles, we made an antibody against a 56 amino-acid sequence found at the carboxyl-terminal regions of the hamster D and E isoforms. By indirect immunofluorescence, this antibody specifically labeled the Golgi complex in cultured cells. In western blots of total cell homogenates, it recognized two close polypeptides, one of which co-purified with the Golgi membranes. Thus, the results of this and previous studies demonstrate that different kinesin light chains are associated with different organelles in cells.


1993 ◽  
Vol 104 (3) ◽  
pp. 819-831 ◽  
Author(s):  
G.F. Zhang ◽  
A. Driouich ◽  
L.A. Staehelin

We have re-examined the effects of the ionophore monensin on the Golgi apparatus of sycamore maple suspension-cultured cells using a combination of high pressure freezing, immunocytochemical and biochemical techniques. Exposure of the cells to 10 microM monensin, which reduces protein secretion by approximately 90%, resulted first in the swelling of the trans-Golgi network, then of the trans-most trans-cisterna, the remaining trans-cisternae, and finally of the cis and medial cisternae. We postulate that these different rates of swelling reflect an underlying hierarchy of compartmental acidification with the trans-Golgi network being the most acidic compartment. Recovery occurred in the reverse sequence. Previous studies have suggested that the large swollen vesicles that accumulate in the cytoplasm of monensin-treated cells arise from the swelling and detachment of entire trans-cisternae. However, based on the many membrane blebbing configurations seen in association with the trans-Golgi network and the trans-Golgi cisternae of monensin-treated cells, and the fact that the surface area of the trans-Golgi cisternae is about five times greater than the surface area of the swollen vesicles, it appears that the swollen vesicles are produced by a budding mechanism. After 35–40 min of monensin treatment, cells with smaller, non-swollen, compact Golgi stacks began to appear and rapidly increased in number, contributing > 60% of the cell population after 60 min and > 80% after 100 min. In contrast, large numbers of swollen vesicles persisted in the cytoplasm of all cells for over 100 min. Since azide treatment of monensin-treated cells can prematurely induce the unswelling response and cellular ATP levels drop substantially after 45 min of monensin treatment, we propose that un-swelling of the Golgi stacks is due to a monensin-induced decline in ATP levels in the cells. Immunocytochemical labeling of the high pressure frozen cells with anti-xyloglucan antibodies demonstrated that the concentration of xyloglucan, a hemicellulose, in the swollen vesicles increased with time. This increase in vesicle contents may explain why these swollen vesicles do not contract in parallel with the Golgi stacks. In vivo labeling experiments with [3H]fucose, [3H]UDP-glucose and [3H]leucine demonstrated that monensin-treatment not only inhibited protein secretion, but also cellulose synthesis. Protein synthesis, on the other hand, was reduced only slightly during the first 30 min of treatment, but quite strongly between 30 and 60 min, consistent with the observed drop in ATP levels after > 40 min of exposure to monensin.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 114 (2) ◽  
pp. 353-365 ◽  
Author(s):  
X. Zhao ◽  
T. Greener ◽  
H. Al-Hasani ◽  
S.W. Cushman ◽  
E. Eisenberg ◽  
...  

Although uncoating of clathrin-coated vesicles is a key event in clathrin-mediated endocytosis it is unclear what prevents uncoating of clathrin-coated pits before they pinch off to become clathrin-coated vesicles. We have shown that the J-domain proteins auxilin and GAK are required for uncoating by Hsc70 in vitro. In the present study, we expressed auxilin in cultured cells to determine if this would block endocytosis by causing premature uncoating of clathrin-coated pits. We found that expression of auxilin indeed inhibited endocytosis. However, expression of auxilin with its J-domain mutated so that it no longer interacted with Hsc70 also inhibited endocytosis as did expression of the clathrin-assembly protein, AP180, or its clathrin-binding domain. Accompanying this inhibition, we observed a marked decrease in clathrin associated with the plasma membrane and the trans-Golgi network, which provided us with an opportunity to determine whether the absence of clathrin from clathrin-coated pits affected the distribution of the clathrin assembly proteins AP1 and AP2. Surprisingly we found almost no change in the association of AP2 and AP1 with the plasma membrane and the trans-Golgi network, respectively. This was particularly obvious when auxilin or GAK was expressed with functional J-domains since, in these cases, almost all of the clathrin was sequestered in granules that also contained Hsc70 and auxilin or GAK. We conclude that expression of clathrin-binding proteins inhibits clathrin-mediated endocytosis by sequestering clathrin so that it is no longer available to bind to nascent pits but that assembly proteins bind to these pits independently of clathrin.


1988 ◽  
Vol 106 (2) ◽  
pp. 253-267 ◽  
Author(s):  
B van Deurs ◽  
K Sandvig ◽  
OW Petersen ◽  
S Olsnes ◽  
K Simons ◽  
...  

We have used a protocol for internalization of ricin, a ligand binding to plasma membrane glycoproteins and glycolipids with terminal galactosyl residues, and infection with the vesicular stomatitis virus ts 045 mutant in BHK-21 cells to determine whether internalized plasma membrane molecules tagged by ricin reach distinct compartments of the biosynthetic-exocytic pathway. At 39.5 degrees C newly synthesized G protein of ts 045 was largely prevented from leaving the endoplasmic reticulum. At the same temperature ricin was endocytosed and reached, in addition to endosomes and lysosomes, elements of the Golgi complex. When the temperature was lowered to 19.5 degrees C, no more ricin was delivered to the Golgi complex, but now G protein accumulated in the Golgi stacks and the trans-Golgi network (TGN). Double-labeling immunogold cytochemistry on ultracryosections was used to detect G protein and ricin simultaneously. These data, combined with stereological and biochemical methods, showed that approximately 5% of the total amount of ricin within the cells, corresponding to 6-8 X 10(4) molecules per cell, colocalized with G protein in the Golgi complex after 60 min at 39.5 degrees C. Of this amount approximately 70-80% was present in the TGN. Since most of the ricin molecules remain bound to their binding sites at the low pH prevailing in compartments of the endocytic pathway, the results indicate that a fraction of the internalized plasma membrane molecules with terminal galactose are not recycled directly from endosomes or delivered to lysosomes, but are routed to the Golgi complex. Also, the results presented here, in combination with other recent studies on ricin internalization, suggest that translocation of the toxic ricin A-chain to the cytosol occurs in the TGN.


1986 ◽  
Vol 102 (5) ◽  
pp. 1726-1737 ◽  
Author(s):  
C A Otey ◽  
M H Kalnoski ◽  
J L Lessard ◽  
J C Bulinski

In many vertebrate nonmuscle cells, the microfilament subunit protein, actin, exists as two isoforms, called beta and gamma, whose sequences differ only in their amino-terminal regions. We have prepared a peptide antibody specifically reactive with the amino-terminal sequence of gamma actin. This antibody reacted with nonmuscle actin as determined by Western blots of SDS gels, and reacted with the gamma, but not the beta, nonmuscle actin isoform as shown by Western blots of isoelectric focusing gels. In immunofluorescence experiments, the gamma peptide antibody stained microfilament bundles, ruffled edges, and the contractile ring of a variety of cultured cells, including mouse L cells, which have previously been reported to contain only the beta actin isoform (Sakiyama, S., S. Fujimura, and H. Sakiyama, 1981, J. Biol. Chem., 256:31-33). Double immunofluorescence experiments using the gamma peptide antibody and an antibody reactive with all actin isoforms revealed no differences in isoform localization. Thus, at the level of resolution of light microscopy, we have detected the gamma actin isoform in all microfilament-containing structures in cultured cells, and have observed no subcellular sorting of the nonmuscle actin isoforms.


1996 ◽  
Vol 109 (13) ◽  
pp. 2967-2978 ◽  
Author(s):  
E. Ralston ◽  
T. Ploug

There is little consensus on the nature of the storage compartment of the glucose transporter GLUT4, in non-stimulated cells of muscle and fat. More specifically, it is not known whether GLUT4 is localized to unique, specialized intracellular storage vesicles, or to vesicles that are part of the constitutive endosomal-lysosomal pathway. To address this question, we have investigated the localization of the endogenous GLUT4 in non-stimulated skeletal myotubes from the cell line C2, by immunofluorescence and immunoelectron microscopy. We have used a panel of antibodies to markers of the Golgi complex (alpha mannosidase II and giantin), of the trans-Golgi network (TGN38), of lysosomes (lgp110), and of early and late endosomes (transferrin receptor and mannose-6-phosphate receptor, respectively), to define the position of their subcellular compartments. By immunofluorescence, GLUT4 appears concentrated in the core of the myotubes. It is primarily found around the nuclei, in a pattern suggesting an association with the Golgi complex, which is further supported by colocalization with giantin and by immunogold electron microscopy. GLUT4 appears to be in the trans-most cisternae of the Golgi complex and in vesicles just beyond, i.e. in the structures that constitute the trans-Golgi network (TGN). In myotubes treated with brefeldin A, the immunofluorescence pattern of GLUT4 is modified, but it differs from both Golgi complex markers and TGN38. Instead, it resembles the pattern of the transferrin receptor, which forms long tubules. In untreated cells, double staining for GLUT4 and transferrin receptor by immunofluorescence shows similar but distinct patterns. Immunoelectron microscopy localizes transferrin receptor, detected by immunoperoxidase, to large vesicles, presumably endosomes, very close to the GLUT4-containing tubulo-vesicular elements. In brefeldin A-treated cells, a network of tubules of approximately 70 nm diameter, studded with varicosities, stains for both GLUT4 and transferrin receptor, suggesting that brefeldin A has caused fusion of the transferrin receptor and GLUT4-containing compartments. The results suggest that GLUT4 storage vesicles constitute a specialized compartment that is either a subset of the TGN, or is very closely linked to it. The link between GLUT4 vesicles and transferrin receptor containing endosomes, as revealed by brefeldin A, may be important for GLUT4 translocation in response to muscle stimulation.


2011 ◽  
Vol 194 (2) ◽  
pp. 257-275 ◽  
Author(s):  
Gregory D. Fairn ◽  
Nicole L. Schieber ◽  
Nicholas Ariotti ◽  
Samantha Murphy ◽  
Lars Kuerschner ◽  
...  

Phosphatidylserine (PS) plays a central role in cell signaling and in the biosynthesis of other lipids. To date, however, the subcellular distribution and transmembrane topology of this crucial phospholipid remain ill-defined. We transfected cells with a GFP-tagged C2 domain of lactadherin to detect by light and electron microscopy PS exposed on the cytosolic leaflet of the plasmalemma and organellar membranes. Cytoplasmically exposed PS was found to be clustered on the plasma membrane, and to be associated with caveolae, the trans-Golgi network, and endocytic organelles including intraluminal vesicles of multivesicular endosomes. This labeling pattern was compared with the total cellular distribution of PS as visualized using a novel on-section technique. These complementary methods revealed PS in the interior of the ER, Golgi complex, and mitochondria. These results indicate that PS in the lumenal monolayer of the ER and Golgi complex becomes exposed cytosolically at the trans-Golgi network. Transmembrane flipping of PS may contribute to the exit of cargo from the Golgi complex.


Sign in / Sign up

Export Citation Format

Share Document