An isoform of kinesin light chain specific for the Golgi complex

2000 ◽  
Vol 113 (11) ◽  
pp. 2047-2054
Author(s):  
F.K. Gyoeva ◽  
E.M. Bybikova ◽  
A.A. Minin

Conventional kinesin is a motor protein implicated in the transport of a variety of cytoplasmic organelles along microtubules. The kinesin molecule consists of two heavy chains with motor domains at their amino termini and two light chains, which, together with the carboxyl termini of the heavy chains, are proposed to mediate binding to cargoes. Since the light chains are represented by multiple isoforms diverging at their carboxyl termini they are presumed to specify kinesin targeting to organelles. Previously, we isolated five cDNAs, encoding hamster kinesin light chain isoforms, and found that one of them (B or C) preferentially associated with mitochondria. To obtain additional evidence proving the specific location of various kinesin light chain isoforms on organelles, we made an antibody against a 56 amino-acid sequence found at the carboxyl-terminal regions of the hamster D and E isoforms. By indirect immunofluorescence, this antibody specifically labeled the Golgi complex in cultured cells. In western blots of total cell homogenates, it recognized two close polypeptides, one of which co-purified with the Golgi membranes. Thus, the results of this and previous studies demonstrate that different kinesin light chains are associated with different organelles in cells.

1998 ◽  
Vol 9 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Alexey Khodjakov ◽  
Ekaterina M. Lizunova ◽  
Alexander A. Minin ◽  
Michael P. Koonce ◽  
Fatima K. Gyoeva

The motor protein kinesin is implicated in the intracellular transport of organelles along microtubules. Kinesin light chains (KLCs) have been suggested to mediate the selective binding of kinesin to its cargo. To test this hypothesis, we isolated KLC cDNA clones from a CHO-K1 expression library. Using sequence analysis, they were found to encode five distinct isoforms of KLCs. The primary region of variability lies at the carboxyl termini, which were identical or highly homologous to carboxyl-terminal regions of rat KLC B and C, human KLCs, sea urchin KLC isoforms 1–3, and squid KLCs. To examine whether the KLC isoforms associate with different cytoplasmic organelles, we made an antibody specific for a 10-amino acid sequence unique to B and C isoforms. In an indirect immunofluorescence assay, this antibody specifically labeled mitochondria in cultured CV-1 cells and human skin fibroblasts. On Western blots of total cell homogenates, it recognized a single KLC isoform, which copurified with mitochondria. Taken together, these data indicate a specific association of a particular KLC (B type) with mitochondria, revealing that different KLC isoforms can target kinesin to different cargoes.


1997 ◽  
Vol 8 (4) ◽  
pp. 675-689 ◽  
Author(s):  
D L Stenoien ◽  
S T Brady

The kinesin heterotetramer consists of two heavy and two light chains. Kinesin light chains have been proposed to act in binding motor protein to cargo, but evidence for this has been indirect. A library of monoclonal antibodies directed against conserved epitopes throughout the kinesin light chain sequence were used to map light chain functional architecture and to assess physiological functions of these domains. Immunocytochemistry with all antibodies showed a punctate pattern that was detergent soluble. A monoclonal antibody (KLC-All) made against a highly conserved epitope in the tandem repeat domain of light chains inhibited fast axonal transport in isolated axoplasm by decreasing both the number and velocity of vesicles moving, whereas an antibody against a conserved amino terminus epitope had no effect. KLC-All was equally effective at inhibiting both anterograde and retrograde transport. Neither antibody inhibited microtubule-binding or ATPase activity in vitro. KLC-All was unique among antibodies tested in releasing kinesin from purified membrane vesicles, suggesting a mechanism of action for inhibition of axonal transport. These results provide further evidence that conventional kinesin is a motor for fast axonal transport and demonstrate that kinesin light chains play an important role in kinesin interaction with membranes.


1996 ◽  
Vol 183 (2) ◽  
pp. 421-429 ◽  
Author(s):  
K Lassoued ◽  
H Illges ◽  
K Benlagha ◽  
M D Cooper

Biosynthesis of the immunoglobulin (Ig) receptor components and their assembly were examined in cell lines representative of early stages in human B lineage development. In pro-B cells, the nascent surrogate light chain proteins form a complex that transiently associates in the endoplasmic reticulum with a spectrum of unidentified proteins (40, 60, and 98 kD) and Bip, a heat shock protein family member. Lacking companion heavy chains, the surrogate light chains in pro-B cells do not associate with either the Ig(alpha) or Ig(beta) signal transduction units, undergo rapid degradation, and fail to reach the pro-B cell surface. In pre-B cells, by contrast, a significant portion of the surrogate light chain proteins associate with mu heavy chains, Ig(alpha), and Ig(beta) to form a stable receptor complex with a relatively long half-life. Early in this assembly process, Bip/GRP78, calnexin, GRP94, and a protein of approximately 17 kD differentially bind to the nascent mu heavy chains. The 17-kD intermediate is gradually replaced by the surrogate light chain protein complex, and the Ig(alpha) and Ig(beta) chains bind progressively to the mu heavy chains during the complex and relatively inefficient process of pre-B receptor assembly. The results suggest that, in humans, heavy chain association is essential for surrogate light chain survival and transport to the cell surface as an integral receptor component.


2000 ◽  
Vol 11 (6) ◽  
pp. 2161-2173 ◽  
Author(s):  
Ming-Ying Tsai ◽  
Gerardo Morfini ◽  
Györgyi Szebenyi ◽  
Scott T. Brady

The nature of kinesin interactions with membrane-bound organelles and mechanisms for regulation of kinesin-based motility have both been surprisingly difficult to define. Most kinesin is recovered in supernatants with standard protocols for purification of motor proteins, but kinesin recovered on membrane-bound organelles is tightly bound. Partitioning of kinesin between vesicle and cytosolic fractions is highly sensitive to buffer composition. Addition of eitherN-ethylmaleimide or EDTA to homogenization buffers significantly increased the fraction of kinesin bound to organelles. Given that an antibody against kinesin light chain tandem repeats also releases kinesin from vesicles, these observations indicated that specific cytoplasmic factors may regulate kinesin release from membranes. Kinesin light tandem repeats contain DnaJ-like motifs, so the effects of hsp70 chaperones were evaluated. Hsc70 released kinesin from vesicles in an MgATP-dependent andN-ethylmaleimide-sensitive manner. Recombinant kinesin light chains inhibited kinesin release by hsc70 and stimulated the hsc70 ATPase. Hsc70 actions may provide a mechanism to regulate kinesin function by releasing kinesin from cargo in specific subcellular domains, thereby effecting delivery of axonally transported materials.


1981 ◽  
Vol 194 (3) ◽  
pp. 673-678 ◽  
Author(s):  
C D Evans ◽  
S S Schreiber ◽  
M Oratz ◽  
M A Rothschild

The relative molar synthesis of cardiac contractile proteins has been measured in the perfused heart under control haemodynamic conditions. This synthesis, of myosin heavy chains, individual light chains (1 and 2), actin and tropomyosin, was determined from isolated guinea-pig hearts perfused for 3h simultaneously with constant specific radioactivities and concentrations of [3H]lysine and [3H]phenylalanine.The data strongly suggest that all of the proteins studied were synthesized from the same precursor pools of lysine and phenylalanine, since the ratio of the specific activities of the two labels was the same in all of the proteins. Measurement of molar synthesis of each contractile protein was the same with either labelled amino acid. Under control haemodynamic-perfusion conditions, the relative molar synthesis of the contractile proteins was actin greater than heavy chains greater than light chain 2 greater than light chain 1 greater than tropomyosin.


2006 ◽  
Vol 173 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Elizabeth E. Glater ◽  
Laura J. Megeath ◽  
R. Steven Stowers ◽  
Thomas L. Schwarz

Mitochondria are distributed within cells to match local energy demands. We report that the microtubule-dependent transport of mitochondria depends on the ability of milton to act as an adaptor protein that can recruit the heavy chain of conventional kinesin-1 (kinesin heavy chain [KHC]) to mitochondria. Biochemical and genetic evidence demonstrate that kinesin recruitment and mitochondrial transport are independent of kinesin light chain (KLC); KLC antagonizes milton's association with KHC and is absent from milton–KHC complexes, and mitochondria are present in klc −/− photoreceptor axons. The recruitment of KHC to mitochondria is, in part, determined by the NH2 terminus–splicing variant of milton. A direct interaction occurs between milton and miro, which is a mitochondrial Rho-like GTPase, and this interaction can influence the recruitment of milton to mitochondria. Thus, milton and miro are likely to form an essential protein complex that links KHC to mitochondria for light chain–independent, anterograde transport of mitochondria.


1980 ◽  
Vol 185 (1) ◽  
pp. 265-268 ◽  
Author(s):  
J Wikman-Coffelt

The non-specific Ca2+-binding sites of skeletal-muscle myosin are located on the light chains; with the dissociation of light chains there is a corresponding decrease in the number of Ca2+-binding sites on light-chain-deficient myosin. The released light chains have a decreased binding affinity. Myosin heavy chains indirectly influence the Ca2+-binding properties of light chains by increasing the affinity of light chains for bivalent cations; this influence varies with pH. Because of light-chain dissociation at low Ca2+ and/or Mg2+ concentrations, anomalies may exist when analyses of non-specific Ca2+-binding properties of myosin are assessed by dialysis equilibrium.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 92-92 ◽  
Author(s):  
Don Siegel ◽  
Eric Ostertag

Abstract Thrombotic thrombocytopenic purpura (TTP) is a potentially fatal disorder often associated with autoantibody inhibition of ADAMTS13, a VWF-cleaving protease. Autoantibodies decrease ADAMTS13 activity resulting in accumulation of “unusually” large VWF multimers that mediate platelet thrombosis. To better understand the role autoantibodies play in disease pathogenesis, as well as to develop more specific methods for diagnosis and therapy, it is necessary to characterize pathogenic antibodies on a molecular level, something not possible through analysis of polyclonal patient antisera. The ability to clone large repertoires of patient monoclonal autoantibodies (mAbs) using phage display offers a unique opportunity to address this issue. Three patient (Pt) antibody phage display libraries were created from either splenocytes (Pt1) or peripheral blood lymphocytes (Pt2, Pt3) of individuals with acquired TTP. ADAMTS13-specific mAbs were isolated by panning against recombinant ADAMTS13. Unique clones were identified by DNA sequencing, and their ability to interact with ADAMTS13 was characterized. After antigen selection of Pt1 library, 56 mAbs were randomly-selected from panning rounds 2 through 4 and 68% were found to comprise heavy chains encoded by VH1-69 paired with a VL3 family lambda light chain (3h or 3m). The remaining mAbs comprised heavy chains from the VH1, 3, or 4 families usually paired with kappa light chains. For Pt2 and Pt3 libraries, there was an identical pattern of genetic restriction in immune response to ADAMTS13, i.e. 16 of 24 mAbs (Pt2) and 27 of 27 mAbs (Pt3) were encoded by VH1-69 heavy chains and VL3 family lambda light chains. Though nearly all mAbs were unique, common CDR3 regions among some of the mAbs provided evidence of B-cell clonal expansion and somatic mutation. Though all mAbs bound to ADAMTS13 irrespective of genetic origin, mAbs comprising a VH1-69 heavy chain paired with a VL3 light chain inhibited ADAMTS13 using the FRET-VW73 assay while mAbs comprising a VH1-69 paired with a kappa light chain or comprising non-VH1-69 heavy chains did not inhibit ADAMTS13, with only two exceptions. MAb binding to ADAMTS13 was blocked by preincubation with normal human or murine plasma, but much less so by plasma from TTP patients or ADAMTS13 knockout mice suggesting crossreactivity with mouse ADAMTS13. Certain human mAbs inhibited cleavage of FRET-VWF73 by mouse ADAMTS13 and also inhibited ADAMTS13 in vivo after injection into the internal jugular vein of mice. Rabbit anti-idiotypic antibodies raised against mAb 416, a prototypical VH1-69-encoded mAb, blocked 416’s ability to inhibit human ADAMTS13. Taken together, the cloning and analyses of a large cohort of ADAMTS13 inhibitory autoantibodies derived from 3 unrelated individuals with acquired TTP revealed a genetically restricted immune response. This feature, if common among TTP patients, offers a potential therapeutic target for treatment of TTP, e.g. selective deletion of B-cells utilizing the VH1-69 heavy chain gene. Furthermore, crossreactivity of some human mAbs with murine ADAMTS13 provides a mouse model of acquired ADAMTS13 deficiency that may prove useful for determining the role of autoantibodies in the pathogenesis of TTP, particularly in the context of additional factors (e.g. environmental) that may be required to trigger the disease. Finally, anti-idiotypic mAbs, currently being cloned from rabbit phage display libraries, may help identify pathogenic antibodies in patient plasma and/or lead to novel therapeutic approaches.


1966 ◽  
Vol 166 (1003) ◽  
pp. 232-243 ◽  

Immunoglobulin G formation was studied using as model system an ascitic form of the murine plasmacytom 5563. Following pulse labelling of the cells with 3 H-leucine, polyribosomes were fractionated on sucrose gradients. By the use of antisera specific for various parts of the IgG molecule, nascent heavy and light chains were detected on distinct polyribosomes of different size. Polyribosomes carrying heavy chain determinants were present in clusters with maximum sedimentation constants of around 300 S.; a much lower proportion of radioactivity was detectable as light chain determinants on polyribosomes up to 200 S. This observation is consistent with the independent synthesis of each chain as one polypeptide unit. Release of light chains appears to be an intermediate stage in the assembly of the IgG molecule. After pulse labelling of cells soluble IgG determinants were analysed by sucrose gradient centrifugation and precipitation with specific antisera. Only the light chains were released into a small pool which may control the release of heavy chains from polyribosomes. The radioactivity of the light chain pool reached a maximum at 10 min, whereas that of whole myeloma protein increased linearly with time. These results fit the interpretation that light chains form a small, rapidly turning over, pool before being incorporated into whole IgG molecules.


Blood ◽  
2014 ◽  
Vol 123 (22) ◽  
pp. 3440-3451 ◽  
Author(s):  
Ping Zhou ◽  
Xun Ma ◽  
Lakshmanan Iyer ◽  
Chakra Chaulagain ◽  
Raymond L. Comenzo

Key PointsImmunoglobulin light-chain and antibody production by plasma cells is significantly reduced by siRNA for the light-chain constant region. In plasma cells making intact antibodies, knockdown of light chains can cause terminal ER stress because of unpaired heavy chains.


Sign in / Sign up

Export Citation Format

Share Document