scholarly journals A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2

2005 ◽  
Vol 14 (15) ◽  
pp. 2181-2188 ◽  
Author(s):  
Erich Roessler ◽  
Alexandre N. Ermilov ◽  
Dorothy Katherine Grange ◽  
Aiqin Wang ◽  
Marina Grachtchouk ◽  
...  
2009 ◽  
Vol 83 (16) ◽  
pp. 7828-7841 ◽  
Author(s):  
Michael J. Ciancanelli ◽  
Valentina A. Volchkova ◽  
Megan L. Shaw ◽  
Viktor E. Volchkov ◽  
Christopher F. Basler

ABSTRACT The Nipah virus (NiV) phosphoprotein (P) gene encodes the C, P, V, and W proteins. P, V, and W, have in common an amino-terminal domain sufficient to bind STAT1, inhibiting its interferon (IFN)-induced tyrosine phosphorylation. P is also essential for RNA-dependent RNA polymerase function. C is encoded by an alternate open reading frame (ORF) within the common amino-terminal domain. Mutations within residues 81 to 113 of P impaired its polymerase cofactor function, as assessed by a minireplicon assay, but these mutants retained STAT1 inhibitory function. Mutations within the residue 114 to 140 region were identified that abrogated interaction with and inhibition of STAT1 by P, V, and W without disrupting P polymerase cofactor function. Recombinant NiVs were then generated. A G121E mutation, which abrogated inhibition of STAT1, was introduced into a C protein knockout background (Cko) because the mutation would otherwise also alter the overlapping C ORF. In cell culture, relative to the wild-type virus, the Cko mutation proved attenuating but the G121E mutant virus replicated identically to the Cko virus. In cells infected with the wild-type and Cko viruses, STAT1 was nuclear despite the absence of tyrosine phosphorylation. This latter observation mirrors what has been seen in cells expressing NiV W. In the G121E mutant virus-infected cells, STAT1 was not phosphorylated and was cytoplasmic in the absence of IFN stimulation but became tyrosine phosphorylated and nuclear following IFN addition. These data demonstrate that the gene for NiV P encodes functions that sequester inactive STAT1 in the nucleus, preventing its activation and suggest that the W protein is the dominant inhibitor of STAT1 in NiV-infected cells.


1991 ◽  
Vol 2 (2) ◽  
pp. 155-164 ◽  
Author(s):  
M Kawamukai ◽  
K Ferguson ◽  
M Wigler ◽  
D Young

The adenylyl cyclase gene, cyr1, of Schizosaccharomyces pombe has been cloned. We have begun an analysis of the function and regulation of adenylyl cyclase by disrupting this gene and by over-expressing all or parts of this gene in various strains. cyr1- strains are viable and contain no measurable cyclic AMP. They conjugate and sporulate under conditions that normally inhibit wild-type strains. Strains containing the cyr1 coding sequences transcribed from the strong adh1 promoter contain greatly elevated adenylyl cyclase activity, as measured in vitro, but only modestly elevated cAMP levels. Such strains conjugate and sporulate less frequently than wild-type cells upon nutrient limitation. Strains which carry the wild-type cyr1 gene but that also express high levels of the amino terminal domain of adenylyl cyclase behave much like cyr1-strains, suggesting that the amino terminal domain can bind a positive regulator. A protein that copurifies with the adenylyl cyclase of S. pombe cross-reacts to antiserum raised against the S. cerevisiae adenylyl cyclase-associated regulatory protein, CAP.


1999 ◽  
Vol 19 (9) ◽  
pp. 6085-6097 ◽  
Author(s):  
Philippe Alen ◽  
Frank Claessens ◽  
Guido Verhoeven ◽  
Wilfried Rombauts ◽  
Ben Peeters

ABSTRACT Steroid receptors are conditional transcription factors that, upon binding to their response elements, regulate the expression of target genes via direct protein interactions with transcriptional coactivators. We have analyzed the functional interactions between the androgen receptor (AR) and 160-kDa nuclear receptor coactivators. Upon overexpression in mammalian cells, these coactivators enhance the transcriptional activity of both the amino-terminal domain (NTD) and the ligand-binding domain (LBD) of the AR. The coactivator activity for the LBD is strictly ligand-controlled and depends on the nature of the DNA-binding domain to which it is fused. We demonstrate that the NTD physically interacts with coactivators and with the LBD and that this interaction, like the functional interaction between the LBD and p160 coactivators, relies on the activation function 2 (AF2) core domain. The mutation of a highly conserved lysine residue in the predicted helix 3 of the LBD (K720A), however, blunts the functional interaction with coactivators but not with the NTD. Moreover, this mutation does not affect the transcriptional activity of the full-size AR. A mutation in the NTD of activation function AF1a (I182A/L183A), which dramatically impairs the activity of the AR, has no effect on the intrinsic transcriptional activity of the NTD but interferes with the cooperation between the NTD and the LBD. Finally, p160 proteins in which the three LXXLL motifs are mutated retain most of their coactivator activity for the full-size AR, although they are no longer functional for the isolated LBD. Together, these data suggest that in the native AR the efficient recruitment of coactivators requires a functional association of the NTD with the LBD and that the binding of coactivators occurs primarily through the NTD.


2008 ◽  
Vol 93 (12) ◽  
pp. 4963-4968 ◽  
Author(s):  
Evangelia Charmandari ◽  
Takamasa Ichijo ◽  
William Jubiz ◽  
Smita Baid ◽  
Keith Zachman ◽  
...  

Context: Interindividual variations in glucocorticoid sensitivity have been associated with manifestations of cortisol excess or deficiency and may be partly explained by polymorphisms in the human glucocorticoid receptor (hGR) gene. We studied a 43-yr-old female, who presented with manifestations consistent with tissue-selective glucocorticoid hypersensitivity. We detected a novel, single, heterozygous nucleotide (G → C) substitution at position 1201 (exon 2) of the hGR gene, which resulted in aspartic acid to histidine substitution at amino acid position 401 in the amino-terminal domain of the hGRα. We investigated the molecular mechanisms of action of the natural mutant receptor hGRαD401H. Methods-Results: Compared with the wild-type hGRα, the mutant receptor hGRαD401H demonstrated a 2.4-fold increase in its ability to transactivate the glucocorticoid-inducible mouse mammary tumor virus promoter in response to dexamethasone but had similar affinity for the ligand (dissociation constant = 6.2 ± 0.6 vs. 6.1 ± 0.6 nm) and time to nuclear translocation (14.75 ± 0.25 vs. 14.25 ± 1.13 min). The mutant receptor hGRαD401H did not exert a dominant positive or negative effect upon the wild-type receptor, it preserved its ability to bind to glucocorticoid response elements, and displayed a normal interaction with the glucocorticoid receptor-interacting protein 1 coactivator. Conclusions: The mutant receptor hGRαD401H enhances the transcriptional activity of glucocorticoid-responsive genes. The presence of the D401H mutation may predispose subjects to obesity, hypertension, and other manifestations of the metabolic syndrome.


1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


Sign in / Sign up

Export Citation Format

Share Document