scholarly journals Swimming Through Parameter Subspaces of a Simple Anguilliform Swimmer

2020 ◽  
Vol 60 (5) ◽  
pp. 1221-1235 ◽  
Author(s):  
Nicholas A Battista

Synopsis Computational scientists have investigated swimming performance across a multitude of different systems for decades. Most models depend on numerous model input parameters and performance is sensitive to those parameters. In this article, parameter subspaces are qualitatively identified in which there exists enhanced swimming performance for an idealized, simple swimming model that resembles a Caenorhabditis elegans, an organism that exhibits an anguilliform mode of locomotion. The computational model uses the immersed boundary method to solve the fluid-interaction system. The 1D swimmer propagates itself forward by dynamically changing its preferred body curvature. Observations indicate that the swimmer’s performance appears more sensitive to fluid scale and stroke frequency, rather than variations in the velocity and acceleration of either its upstroke or downstroke as a whole. Pareto-like optimal fronts were also identified within the data for the cost of transport and swimming speed. While this methodology allows one to locate robust parameter subspaces for desired performance in a straight-forward manner, it comes at the cost of simulating orders of magnitude more simulations than traditional fluid–structure interaction studies.

2019 ◽  
Vol 863 ◽  
pp. 1031-1061 ◽  
Author(s):  
Alexander P. Hoover ◽  
Antonio J. Porras ◽  
Laura A. Miller

Diverse organisms that swim and fly in the inertial regime use the flapping or pumping of flexible appendages and cavities to propel themselves through a fluid. It has long been postulated that the speed and efficiency of locomotion are optimized by oscillating these appendages at their frequency of free vibration. In jellyfish swimming, a significant contribution to locomotory efficiency has been attributed to the effects passive energy recapture, whereby the bell is passively propelled through the fluid through its interaction with stopping vortex rings formed during each expansion of the bell. In this paper, we investigate the interplay between resonance and passive energy recapture using a three-dimensional implementation of the immersed boundary method to solve the fluid–structure interaction of an elastic oblate jellyfish bell propelling itself through a viscous fluid. The motion is generated through a fixed duration application of active tension to the bell margin, which mimics the action of the coronal swimming muscles. The pulsing frequency is then varied by altering the length of time between the application of applied tension. We find that the swimming speed is maximized when the bell is driven at its resonant frequency. However, the cost of transport is maximized by driving the bell at lower frequencies whereby the jellyfish passively coasts between active contractions through its interaction with the stopping vortex ring. Furthermore, the thrust generated by passive energy recapture was found to be dependent on the elastic properties of the jellyfish bell.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 169 ◽  
Author(s):  
Jason G. Miles ◽  
Nicholas A. Battista

Jellyfish are majestic, energy-efficient, and one of the oldest species that inhabit the oceans. It is perhaps the second item, their efficiency, that has captivated scientists for decades into investigating their locomotive behavior. Yet, no one has specifically explored the role that their tentacles and oral arms may have on their potential swimming performance. We perform comparative in silico experiments to study how tentacle/oral arm number, length, placement, and density affect forward swimming speeds, cost of transport, and fluid mixing. An open source implementation of the immersed boundary method was used (IB2d) to solve the fully coupled fluid–structure interaction problem of an idealized flexible jellyfish bell with poroelastic tentacles/oral arms in a viscous, incompressible fluid. Overall tentacles/oral arms inhibit forward swimming speeds, by appearing to suppress vortex formation. Nonlinear relationships between length and fluid scale (Reynolds Number) as well as tentacle/oral arm number, density, and placement are observed, illustrating that small changes in morphology could result in significant decreases in swimming speeds, in some cases by upwards of 80–90% between cases with or without tentacles/oral arms.


2016 ◽  
Vol 3 (10) ◽  
pp. 160406 ◽  
Author(s):  
Gil Iosilevskii ◽  
Yannis P. Papastamatiou

Sharks have a distinctive shape that remained practically unchanged through hundreds of millions of years of evolution. Nonetheless, there are variations of this shape that vary between and within species. We attempt to explain these variations by examining the partial derivatives of the cost of transport of a generic shark with respect to buoyancy, span and chord of its pectoral fins, length, girth and body temperature. Our analysis predicts an intricate relation between these parameters, suggesting that ectothermic species residing in cooler temperatures must either have longer pectoral fins and/or be more buoyant in order to maintain swimming performance. It also suggests that, in general, the buoyancy must increase with size, and therefore, there must be ontogenetic changes within a species, with individuals getting more buoyant as they grow. Pelagic species seem to have near optimally sized fins (which minimize the cost of transport), but the majority of reef sharks could have reduced the cost of transport by increasing the size of their fins. The fact that they do not implies negative selection, probably owing to decreased manoeuvrability in confined spaces (e.g. foraging on a reef).


2018 ◽  
Vol 841 ◽  
pp. 1073-1084 ◽  
Author(s):  
Han Chen ◽  
Hao-Ran Liu ◽  
Xi-Yun Lu ◽  
Hang Ding

We numerically investigate the mechanism leading to the entrapment of spheres at the gas–liquid interface after impact. Upon impact onto a liquid pool, a hydrophobic sphere is seen to follow one of the three regimes identified in the experiment (Lee & Kim, Langmuir, vol. 24, 2008, pp. 142–145): sinking, bouncing or being entrapped at the interface. It is important to understand the role of wettability in this process of flow–structure interaction with dynamic wetting, and in particular, to what extent the wettability can determine whether the sphere is entrapped at the interface. For this purpose, a diffuse-interface immersed boundary method is adopted in the numerical simulations. We expand the parameter space considered previously, provide the phase diagrams and identify the key phenomena in the impact dynamics. Then, we propose the scaling models to interpret the critical conditions for the occurrence of sphere entrapment, accounting for the wettability of the sphere. The models are shown to provide a good correlation among the impact inertia of the drop, the surface tension, the wettability and the density ratio of the sphere to the liquid.


2011 ◽  
Vol 8 (2) ◽  
pp. 266-269 ◽  
Author(s):  
Andrew M. Hein ◽  
Katrina J. Keirsted

Understanding the effects of water temperature on the swimming performance of fishes is central in understanding how fish species will respond to global climate change. Metabolic cost of transport (COT)—a measure of the energy required to swim a given distance—is a key performance parameter linked to many aspects of fish life history. We develop a quantitative model to predict the effect of water temperature on COT. The model facilitates comparisons among species that differ in body size by incorporating the body mass-dependence of COT. Data from 22 fish species support the temperature and mass dependencies of COT predicted by our model, and demonstrate that modest differences in water temperature can result in substantial differences in the energetic cost of swimming.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Mithun Kanchan ◽  
Ranjith Maniyeri

Abstract Many microfluidics-based applications involve fluid–structure interaction (FSI) of flexible membranes. Thin flexible membranes are now being widely used for mixing enhancement, particle segregation, flowrate control, drug delivery, etc. The FSI simulations related to these applications are challenging to numerically implement. In this direction, techniques like immersed boundary method (IBM) have been successful. In this study, two-dimensional numerical simulation of flexible membrane fixed at two end points in a rectangular channel subjected to uniform fluid flow is carried out at low Reynolds number using a finite volume based IBM. A staggered Cartesian grid system is used and SIMPLE algorithm is used to solve the governing continuity and Navier–Stokes equations. The developed model is validated using the previous research work and numerical simulations are carried out for different parametric test cases. Different membrane mode shapes are observed due to the complex interplay between the hydrodynamics and structural elastic forces. Since the membrane undergoes deformation with respect to inlet fluid conditions, a variation in flowrate past the flexible structure is confirmed. It is found that, by changing the membrane length, bending rigidity, and its initial position in the channel, flowrate can be controlled. Also, for membranes that are placed at the channel midplane undergoing self-excited oscillations, there exists a critical dimensionless membrane length condition L ≥ 1.0 that governs this behavior. Finally, an artificial neural network (ANN) model is developed that successfully predicts flowrate in the channel for different membrane parameters.


Sign in / Sign up

Export Citation Format

Share Document