scholarly journals The rising cost of warming waters: effects of temperature on the cost of swimming in fishes

2011 ◽  
Vol 8 (2) ◽  
pp. 266-269 ◽  
Author(s):  
Andrew M. Hein ◽  
Katrina J. Keirsted

Understanding the effects of water temperature on the swimming performance of fishes is central in understanding how fish species will respond to global climate change. Metabolic cost of transport (COT)—a measure of the energy required to swim a given distance—is a key performance parameter linked to many aspects of fish life history. We develop a quantitative model to predict the effect of water temperature on COT. The model facilitates comparisons among species that differ in body size by incorporating the body mass-dependence of COT. Data from 22 fish species support the temperature and mass dependencies of COT predicted by our model, and demonstrate that modest differences in water temperature can result in substantial differences in the energetic cost of swimming.

2021 ◽  
Author(s):  
Russell T Johnson ◽  
Nicholas August Bianco ◽  
James Finley

Several neuromuscular impairments, such as weakness (hemiparesis), occur after an individual has a stroke, and these impairments primarily affect one side of the body more than the other. Predictive musculoskeletal modeling presents an opportunity to investigate how a specific impairment affects gait performance post-stroke. Therefore, our aim was to use to predictive simulation to quantify the spatiotemporal asymmetries and changes to metabolic cost that emerge when muscle strength is unilaterally reduced. We also determined how forced spatiotemporal symmetry affects metabolic cost. We modified a 2-D musculoskeletal model by uniformly reducing the peak isometric muscle force in all muscles unilaterally. We then solved optimal control simulations of walking across a range of speeds by minimizing the sum of the cubed muscle excitations across all muscles. Lastly, we ran additional optimizations to test if reducing spatiotemporal asymmetry would result in an increase in metabolic cost. Our results showed that the magnitude and direction of effort-optimal spatiotemporal asymmetries depends on both the gait speed and level of weakness. Also, the optimal metabolic cost of transport was 1.25 m/s for the symmetrical and 20% weakness models but slower (1.00 m/s) for the 40% and 60% weakness models, suggesting that hemiparesis can account for a portion of the slower gait speed seen in people post-stroke. Adding spatiotemporal asymmetry to the cost function resulted in small increases (~4%) in metabolic cost. Overall, our results indicate that spatiotemporal asymmetry may be optimal for people post-stroke, who have asymmetrical neuromuscular impairments. Additionally, the effect of speed and level of weakness on spatiotemporal asymmetry may explain the well-known heterogenous distribution of spatiotemporal asymmetries observed in the clinic. Future work could extend our results by testing the effects of other impairments on optimal gait strategies, and therefore build a more comprehensive understanding of the gait patterns in people post-stroke.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaohui Wei ◽  
Yongjun Long ◽  
Chunlei Wang ◽  
Shigang Wang

Transverse gallop is a common gait used by a large number of quadrupeds. This paper employs the simplified dimensionless quadrupedal model to discuss the underlying mechanism of the transverse galloping pattern. The model is studied at different running speeds and different values of leg stiffness, respectively. If the horizontal running speed reaches up to a critical value at a fixed leg stiffness, or if the leg stiffness reaches up to a critical value at a fixed horizontal speed, a key property would emerge which greatly reduces the overall mechanical forces of the dynamic system in a proper range of initial pitch angular velocities. Besides, for each horizontal speed, there is an optimal stiffness of legs that can reduce both the mechanical loads and the metabolic cost of transport. Furthermore, different body proportions and landing distance lags of a pair of legs are studied in the transverse gallop. We find that quadrupeds with longer length of legs compared with the length of the body are more suitable to employ the transverse galloping pattern, and the landing distance lag of a pair of legs could reduce the cost of transport and the locomotion frequency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Damiano Paniccia ◽  
Luca Padovani ◽  
Giorgio Graziani ◽  
Renzo Piva

AbstractSeveral fish species propel by oscillating the tail, while the remaining part of the body essentially contributes to the overall drag. Since in this case thrust and drag are in a way separable, most attention was focused on the study of propulsive efficiency for flapping foils under a prescribed stream. We claim here that the swimming performance should be evaluated, as for undulating fish whose drag and thrust are severely entangled, by turning to self-propelled locomotion to find the proper speed and the cost of transport for a given fishlike body. As a major finding, the minimum value of this quantity corresponds to a locomotion speed in a range markedly different from the one associated with the optimal efficiency of the propulsor. A large value of the feathering parameter characterizes the minimum cost of transport while the optimal efficiency is related to a large effective angle of attack. We adopt here a simple two-dimensional model for both inviscid and viscous flows to proof the above statements in the case of self-propelled axial swimming. We believe that such an easy approach gives a way for a direct extension to fully free swimming and to real-life configurations.


1970 ◽  
Vol 53 (3) ◽  
pp. 763-777 ◽  
Author(s):  
HENRY D. PRANGE ◽  
KNUT SCHMIDT-NIELSEN

1. The metabolic cost of swimming was studied in mallard ducks (Anas platyrhynchos) which had been trained to swim steadily in a variable-speed water channel. 2. At speeds of from 0.35 to 0.50 m/sec the oxygen consumption remained relatively constant at approximately 2.2 times the resting level. At speeds of 0.55 m/sec and higher the oxygen consumption increased rapidly and reached 4.1 times resting at the maximum sustainable speed of 0.70 m/sec. 3. The maximum sustainable swimming speed of the ducks coincided with the limit predicted from hydrodynamic considerations of the water resistance of a displacement-hulled ship of the same hull length as a duck (0.33 m). 4. The cost of transport (metabolic rate/speed) reached a minimum of 5.77 kcal/kg km at a swimming speed of 0.50 m/sec. Ducks swimming freely on a pond were observed to swim at the speed calculated in experimental trials to give minimum cost of transport. 5. Drag measurements made with model ducks indicated a maximum overall efficiency (power output/power input) for the swimming ducks of about 5%. Ships typically have maximum efficiencies of 20-30%. Because of the difficulty in delimiting the cost of swimming activity alone from the other bodily functions of the duck, overall efficiency may present an incorrect description of the swimming performance of the duck relative to that of a ship. An hydrodynamic parameter such as speed/length ratio [speed/(hull length)½] whereby a duck excels conventional ships may present a more appropriate comparison.


2016 ◽  
Vol 3 (10) ◽  
pp. 160406 ◽  
Author(s):  
Gil Iosilevskii ◽  
Yannis P. Papastamatiou

Sharks have a distinctive shape that remained practically unchanged through hundreds of millions of years of evolution. Nonetheless, there are variations of this shape that vary between and within species. We attempt to explain these variations by examining the partial derivatives of the cost of transport of a generic shark with respect to buoyancy, span and chord of its pectoral fins, length, girth and body temperature. Our analysis predicts an intricate relation between these parameters, suggesting that ectothermic species residing in cooler temperatures must either have longer pectoral fins and/or be more buoyant in order to maintain swimming performance. It also suggests that, in general, the buoyancy must increase with size, and therefore, there must be ontogenetic changes within a species, with individuals getting more buoyant as they grow. Pelagic species seem to have near optimally sized fins (which minimize the cost of transport), but the majority of reef sharks could have reduced the cost of transport by increasing the size of their fins. The fact that they do not implies negative selection, probably owing to decreased manoeuvrability in confined spaces (e.g. foraging on a reef).


2021 ◽  
Vol 17 (11) ◽  
pp. e1009608
Author(s):  
Ryan T. Schroeder ◽  
Arthur D. Kuo

The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic “Spring-mass” computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running.


2013 ◽  
Vol 114 (4) ◽  
pp. 498-503 ◽  
Author(s):  
Alberto E. Minetti ◽  
Paolo Gaudino ◽  
Elena Seminati ◽  
Dario Cazzola

Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.


1962 ◽  
Vol 17 (1) ◽  
pp. 117-118 ◽  
Author(s):  
Shanker Rao

Metabolic cost to the human body of various postures has been assessed by many workers. The cost with the body in the topsy-turvy posture, or while “standing on the head,” has not been reported so far. Energy expenditure was calculated indirectly by estimating the amount of oxygen consumed while in a particular posture. A Benedict-type recording spirometer was used for this purpose. The subjects were six healthy medical students. The mean cost of standing on the head was determined to be 336 ml, or 1.62 kcal/min, and that of “suspension by the feet” to be 300 ml, or 1.44 kcal/min. The possible causes of increased consumption in relation to the “standing erect” posture are discussed. Submitted on May 26, 1961


2013 ◽  
Vol 37 (4) ◽  
pp. 377-383 ◽  
Author(s):  
Stan L. Lindstedt ◽  
Patrick M. Mineo ◽  
Paul J. Schaeffer

This laboratory exercise demonstrates fundamental principles of mammalian locomotion. It provides opportunities to interrogate aspects of locomotion from biomechanics to energetics to body size scaling. It has the added benefit of having results with robust signal to noise so that students will have success even if not “meticulous” in attention to detail. First, using respirometry, students measure the energetic cost of hopping at a “preferred” hop frequency. This is followed by hopping at an imposed frequency half of the preferred. By measuring the O2 uptake and work done with each hop, students calculate mechanical efficiency. Lessons learned from this laboratory include 1) that the metabolic cost per hop at half of the preferred frequency is nearly double the cost at the preferred frequency; 2) that when a person is forced to hop at half of their preferred frequency, the mechanical efficiency is nearly that predicted for muscle but is much higher at the preferred frequency; 3) that the preferred hop frequency is strongly body size dependent; and 4) that the hop frequency of a human is nearly identical to the galloping frequency predicted for a quadruped of our size. Together, these exercises demonstrate that humans store and recover elastic recoil potential energy when hopping but that energetic savings are highly frequency dependent. This stride frequency is dependent on body size such that frequency is likely chosen to maximize this function. Finally, by requiring students to make quantitative solutions using appropriate units and dimensions of the physical variables, these exercises sharpen analytic and quantitative skills.


2020 ◽  
Vol 223 (23) ◽  
pp. jeb216119
Author(s):  
Christopher J. Arellano ◽  
Obioma B. McReynolds ◽  
Shernice A. Thomas

ABSTRACTHumans often perform tasks that require them to carry loads, but the metabolic cost of carrying loads depends on where the loads are positioned on the body. We reasoned that carrying loads at the arms’ center of mass (COM) during walking might be cheap because arm swing is thought to be dominated by passive pendulum dynamics. In contrast, we expected that carrying loads at the leg COM would be relatively expensive because muscular actuation is necessary to initiate and propagate leg swing. Therefore, we hypothesized that carrying loads at the arm COM while swinging would be cheaper than carrying loads at the leg COM. We further hypothesized that carrying loads at the arm COM while swinging would be more expensive than carrying loads at the waist, where the mass does not swing relative to the body. We measured net metabolic power, arm and leg motion, and the free vertical moment while subjects (n=12) walked on a treadmill (1.25 m s−1) without a load, and with 8 kg added to the arms (swinging versus not swinging), legs or waist. We found that carrying loads on the arms or legs altered arm swinging amplitude; however, the free vertical moment remained similar across conditions. Most notably, the cost of carrying loads on the swinging arms was 9% less than carrying at the leg COM (P<0.001), but similar to that at the waist (P=0.529). Overall, we found that carrying loads at the arm COM is just as cheap as carrying loads at the waist.


Sign in / Sign up

Export Citation Format

Share Document