On the Time Course in Adapting to Low Light Intensities in Marine Phytoplankton

1964 ◽  
Vol 29 (1) ◽  
pp. 19-24 ◽  
Author(s):  
E. S. Nielsen ◽  
T. S. Park

In a tank filled with a suspension of indian ink in tap water, a population of Daphnia magna will undergo a complete cycle of vertical migration when an overhead light source is cycli­cally varied in intensity. A ‘dawn rise’ to the surface at low intensity is followed by the descent of the animals to a characteristic maximum depth. The animals rise to the surface again as the light decreases, and finally show a typical midnight sinking. The light intensities at the level of the animals in this experiment are of the same order as those which have been reported in field observations; the time course of the movement also repeats the natural conditions in the field. The process is independent of the duration of the cycle and is related only to the variation in overhead light intensity. At low light intensity the movement of the animal is determined solely by positive photo-kinesis; the dawn rise is a manifestation of this, and is independent of the direction of the light. At high light intensities there is an orientation response which is superimposed upon an alternating positive (photokinetic) phase and a negative phase during which movement is inhibited. The fully oriented animal shows a special type of positive and negative phototaxis, moving towards the light at reduced light intensities and away from it when the light intensity is increased. In this condition it follows a zone of optimum light intensity with some exactness. Experiments show that an animal in this fully oriented condition will respond to the slow changes of intensity characteristic of the diurnal cycle, while being little affected by tran­sient changes of considerable magnitude.


1999 ◽  
Vol 16 (3) ◽  
pp. 503-511 ◽  
Author(s):  
R.A. SHIELLS ◽  
G. FALK

Simultaneous extracellular ERG and intracellular recordings from horizontal and ON-bipolar cells were obtained from the dark-adapted retina of the dogfish. The light intensity–peak response relation (IR) and time course of on-bipolar cell responses closely resembled that of the ERG b-wave, but only at low light intensities [<10 rhodopsin molecules bleached per rod (Rh*)]. Block of on-bipolar cell responses with 50 μM 2-amino-4-phosphonobutyrate (APB) abolished the b-wave and unmasked a vitreal-negative wave. Subtraction from the control ERG resulted in the isolation of a vitreal-positive ERG with an IR which matched that of on-bipolar cells over the full range of light intensities. The D.C. component of the ERG arises as a result of sustained depolarization of on-bipolar cells in response to long (>0.5 s) dim light stimuli, or following bright light flashes. The IR of horizontal cells and the vitreal-negative wave unmasked by APB could be matched by scaling at low light intensities (<5 Rh*). However, horizontal cell responses saturated at about 30 Rh*, while the vitreal-negative wave continued to increase in amplitude. The time course of horizontal cell membrane current with dim flashes could be matched to the rising phase of the vitreal-negative wave, assuming that the delay in generating the voltage response in horizontal cells is due to their long (100 ms) membrane time constant. Blocking post-photoreceptor activity resulted in a much smaller vitreal-negative wave than that unmasked by APB alone. We conclude that the b-wave arises from on-bipolar cell depolarization, while the leading edge of the a-wave is a composite of the change in extracellular voltage drop across the rod layer and a component (proximal PIII) reflecting a decrease in extracellular K+ as horizontal cell synaptic channels close with light.


Author(s):  
L. Ignatiades ◽  
G. E. Fogg

A few studies on the excretion of organic matter by marine phytoplankton in culture have been reported (Guillard & Wangersky, 1958; Wangersky & Guillard, 1960; Stewart, 1963; Hellebust, 1965). Eppley & Sloan (1965) reported extensive excretion in Skeletonema costatum (Greville) Cleve cultures as they approached senescence and emphasized that excretion is inversely proportional to the physiological activity of cells. Hellebust (1965) demonstrated the release of high amounts (up to 38% of the carbon assimilated) of organic matter by Sk. costatum cells exposed to low light intensities. It is apparent that more knowledge is needed in order to define the intra- and extracellular factors affecting the excretion.


1964 ◽  
Vol 48 (2) ◽  
pp. 297-322 ◽  
Author(s):  
Alan R. Adolph

Spontaneous, subthreshold fluctuations of membrane potential are recorded in the eccentric cell body or dendrite of the dark-adapted Limulus ommatidium. These slow potential fluctuations (SPF's) are random in amplitude and in time of occurrence. The relation between average frequency of SPF's and light intensity is linear for low light intensities and becomes a non-linear saturation for higher intensities. The occurrences of SPF's have Poisson statistics in the dark but are non-Poisson with light stimuli. Light-adapting the ommatidium greatly decreases the SPF amplitude, and it increases the average frequency of SPF's in the dark and in response to light (facilitatory action). The shape (time course of response) of the SPF does not change at different light intensities and it is the result of a concurrent and conterminous change in membrane resistance. The functional properties of the SPF's are analyzed in terms of a stochastic model based on the summation of random events in time ("shot effect").


Sign in / Sign up

Export Citation Format

Share Document