scholarly journals Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel

2009 ◽  
Vol 66 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
Tonje Lexau Nesse ◽  
Halvor Hobæk ◽  
Rolf J. Korneliussen

Abstract Nesse, T. L., Hobæk, H., and Korneliussen, R. J. 2009. Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. – ICES Journal of Marine Science, 66: 1169–1175. Atlantic mackerel (Scomber scombrus) are weak sound scatterers compared with fish that have swimbladders. Accurate acoustic estimates of mackerel abundance require estimates of target strength. Different parts of mackerel may dominate the backscattering spectra. Mackerel schools are acoustically recognized mainly by backscatter four times stronger at 200 kHz than at 38 kHz. Simulations have established that backscatter from only the flesh and the backbone could explain this frequency response, although there are uncertainties in the model parameters and simplifications. In this paper, experiments conducted in a laboratory tank to investigate the complexity of mackerel backscatter are discussed. Acoustic backscatter was measured over the frequency range 65–470 kHz from individual dead mackerel, and their backbones, heads, and skulls. Backscatter from the backbones was measured at several angles of incidence. Grating lobes (Bragg scattering) appeared at different angles, depending on the acoustic frequency and the spacing of the vertebrae. These lobes were evident in backbone backscatter after propagating through the flesh and can be used, in principle, to determine mackerel size acoustically. The frequency response of individual, ex situ Atlantic mackerel estimated from these measurements did not match that from the measurements of in situ mackerel schools. Further investigation is warranted.

Author(s):  
G Boyra ◽  
G Moreno ◽  
B Orue ◽  
B Sobradillo ◽  
I Sancristobal

Abstract Bigeye tuna (Thunnus obesus) is an important commercial fish species, which aggregates around fish aggregating devices (FADs) together with other tropical tuna species. Acoustics is the main technology used by fishers and scientists for the location and quantification of tunas at FADs. However, currently it is not possible to reliably discriminate between the different tropical tuna species that are found together at FADs using acoustic methods, which hampers the development of selective fishing needed to preserve some of the tropical tuna species for which overfishing is occurring. One of the prerequisites for species discrimination is to know the target strength (TS) of each species at different frequencies. This paper measures in situ TS values and explores the frequency response of bigeye tuna at FADs in the central Pacific Ocean using three different acoustic frequencies. For the range of body length caught (40–100 cm), the obtained b20 values were −65, −66, and −72 dB for 38, 120, and 200 kHz, respectively. The decreasing frequency response pattern obtained for this swimbladder bearing species contrasts with the opposite pattern previously observed for skipjack tuna (bladder-less), the most abundant tuna species found at FADs, hence allowing the potential for discrimination between the two species.


2011 ◽  
Vol 69 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Lucio Calise ◽  
Tor Knutsen

Abstract Calise, L., and Knutsen, T. 2012. Multifrequency target strength of northern krill (Meganyctiphanes norvegica) swimming horizontally. – ICES Journal of Marine Science, 69: 119–130. Multifrequency acoustic measurements on ex situ horizontally swimming krill were made in a novel experimental setting. An ensemble of northern krill (Meganyctiphanes norvegica) was introduced to a large enclosure (a mesocosm), and acoustic backscatter was sampled using a multifrequency (70, 120, and 200 kHz) echosounder (Simrad EK60). Two submerged lamps were placed at opposite sides of the mesocosm and switched on and off to induce the krill, by light attraction, to swim horizontally through the acoustic beams. By tracking echoes, animal displacement, swimming speed, and target strength (TS) by frequency were estimated. The dominant and secondary modes of the total-length distribution were 21.8 ± 3.0 and 27.8 ± 2.7 mm, respectively. Although krill orientation was assumed stable and the ping rate was high, the range and inter-ping variability of the average TS values were large, decreasing and increasing with frequency, respectively. The overall TS frequency response observed and concurrent measurements at 120 and 200 kHz confirm the theoretical expectation that the acoustic backscatter from the investigated organisms were confined to the Rayleigh and Geometric scattering regions, a finding that might both aid acoustic identification and size-group separation of in situ northern krill.


2004 ◽  
Vol 61 (3) ◽  
pp. 363-377 ◽  
Author(s):  
Elliott L. Hazen ◽  
John K. Horne

Abstract Many biological and physical factors potentially affect target strength. While these sources have been identified, few studies have compared the relative effects of individual factors. Modelled and measured target strengths in non-dimensional metrics were used to compare and rank the effects of fish length, tilt, depth, and acoustic frequency on backscatter intensity. Ex situ measurements of target strength were used to examine the effects of tilt and depth and then compared to backscatter model predictions. Swimbladder volume reduction due to increasing pressure at depth was modelled using Boyle's law and by varying the ratio of dorsal to lateral compression. We found that length has the largest effect on the modelled and measured backscatter intensity, followed by tilt, frequency, and depth. Including tilt distributions in backscatter estimates improved the match between empirical target-strength measures and model predictions. Non-dimensional influence ratios provide insight into the sources and magnitudes of the backscatter variability.


2007 ◽  
Vol 64 (6) ◽  
pp. 1145-1151 ◽  
Author(s):  
Natalia Gorska ◽  
Rolf J. Korneliussen ◽  
Egil Ona

Abstract Gorska, N., Korneliussen, R. J., and Ona, E. 2007. Acoustic backscatter by schools of adult Atlantic mackerel. – ICES Journal of Marine Science, 64: 1145–1151. The extent of acoustic backscatter by schools of adult Atlantic mackerel (Scomber scombrus) is investigated to improve biomass estimates. Previous studies involving modelled scattering from individual mackerel showed that backscattering at high frequencies is dominated by the contribution from the backbone. Accurate predictions of the scattering spectra require consideration of backscattering from the entire skeleton, including details of the bone shapes and their acoustic properties. Here, the backscattering cross-sections from mackerel flesh and backbone are estimated theoretically from 18 to 364 kHz and averaged over fish size and tilt angle, then compared with in situ measurements of volume backscattering from mackerel schools. Based on the comparisons, some gross features of the observed relative frequency response are explained, and recommendations for further studies suggested.


2011 ◽  
Vol 77 (6) ◽  
pp. 903-913 ◽  
Author(s):  
Hsueh-Jung Lu ◽  
Myounghee Kang ◽  
Hsing-Han Huang ◽  
Chi-Chang Lai ◽  
Long-Jin Wu

2009 ◽  
Vol 66 (6) ◽  
pp. 1149-1154 ◽  
Author(s):  
Geir Pedersen ◽  
Rolf J. Korneliussen

Abstract Pedersen, G., and Korneliussen, R. J. 2009. The relative frequency response derived from individually separated targets of northeast Arctic cod (Gadus morhua), saithe (Pollachius virens), and Norway pout (Trisopterus esmarkii). – ICES Journal of Marine Science, 66: 1149–1154. The concept of relative frequency response r(f) of fish is an important feature used to characterize acoustic targets. It is defined as the volume-backscattering coefficient at a specific frequency f relative to that of a reference frequency. When based on volume backscattering, r(f) reliably distinguishes several acoustic categories if the insonified volumes are reasonably comparable between the frequencies, and that enough samples and targets are measured to constrain stochastic variations in the data within acceptable limits. Therefore, r(f) distinguishes different fish species with swimbladders poorly if they appear as single targets. Using target-strength (TS) data, the acoustic measurements are more spatially comparable, and averaging the TS over an echotrace of a single fish improves the ability to distinguish between different species. Frequency response was estimated using TS data from in situ measurements, collected using Simrad EK60 echosounders with split-beam transducers transmitting simultaneously at 18, 38, 70, 120, and 200 kHz. Selected series with nearly pure catches of northeast Arctic cod (Gadus morhua), saithe (Pollachius virens), and Norway pout (Trisopterus esmarkii) were analysed using a target-tracking algorithm. The frequency response of northeast Arctic cod and saithe did not differ significantly, but at high frequencies, the response of both northeast Arctic cod and saithe differed from that of Norway pout. However, in the latter case, northeast Arctic cod and saithe could be separated, because of their different TS magnitudes.


1999 ◽  
Vol 594 ◽  
Author(s):  
T. Hoffmann ◽  
V. Senez ◽  
P. Leduc

AbstractIn this study, we present a numerical model, implemented in our two-dimensional Finite-Element process simulator, allowing the evaluation of the mechanical stress generated by deposited oxides in case of adsorbing or desorbing of water. Using both in-situ and ex-situ measurements of stress, the model parameters (water diffusion, evaporation rate, viscosity) are calibrated. Moisture instability of doped silicate glasses, like borophosphosilicate (BPSG) and phosphosilicate (PSG), is investigated. Moreover, an extension of the present model to simulate the densification of Spin-On-Glass (SOG) will be demonstrated. A failure analysis of a specific structure in an industrial process will validate the capability of the model to evaluate and minimize the risk of cracking in SOG films during densification.


2011 ◽  
Vol 19 (3) ◽  
Author(s):  
Kouichi Sawada ◽  
Kazuhisa Uchikawa ◽  
Tomohiko Matsuura ◽  
Hiroya Sugisaki ◽  
Kazuo Amakasu ◽  
...  

Author(s):  
Brandyn M Lucca ◽  
Patrick H Ressler ◽  
H Rodger Harvey ◽  
Joseph D Warren

Abstract Target strength model inputs including morphometry, material properties, lipid composition, and in situ orientations were measured for sub-Arctic krill (Euphausia pacifica, Thysanoessa spinifera, T. inermis, and T. raschii) in the eastern Bering Sea (EBS, 2016) and Gulf of Alaska (GOA, 2017). Inter-species and -regional animal lengths were significantly different (F1,680 = 114.10, p < 0.01), while animal shape was consistent for all species measured. The polar lipid phosphatidycholine was the dominant lipid, comprising 86 ± 16% (mean ± SD) and 56 ± 22% of total lipid mass in GOA and EBS krill, respectively. Krill density contrasts varied by species and region rather than with morphometry, lipid composition, or local chla fluorescence. Mean in situ krill orientation was 1 ± 31°, with 25% of observed krill within ±5° of broadside incidence. Modelled target strength sensitivity was frequency independent for variations in material properties but was primarily sensitive to morphometry and orientation at lower (38 kHz) and higher (200 kHz) frequencies, respectively. Measured variability in material properties corresponded to an order of magnitude difference in acoustic estimates of biomass at 120 kHz. These results provide important inputs and constraints for acoustic scattering models of ecologically important sub-Arctic krill species.


Sign in / Sign up

Export Citation Format

Share Document