scholarly journals The acoustic characteristics of three jellyfish species: Nemopilema nomurai, Cyanea nozakii, and Aurelia aurita

2009 ◽  
Vol 66 (6) ◽  
pp. 1233-1237 ◽  
Author(s):  
Miyuki Hirose ◽  
Tohru Mukai ◽  
Doojin Hwang ◽  
Kohji Iida

Abstract Hirose, M., Mukai, T., Hwang, D., and Iida, K. 2009. The acoustic characteristics of three jellyfish species: Nemopilema nomurai, Cyanea nozakii, and Aurelia aurita. – ICES Journal of Marine Science, 66: 1233–1237. Reports about jellyfish damaging nets and reducing fish catches are increasing, and data on the abundance and distribution of various jellyfish species are needed to forecast where and when their blooms will happen. Acoustic techniques can be used to obtain this information if the acoustic characteristics of the targets are known. This is a study of acoustic scattering from three jellyfish species: Nemopilema nomurai (order Rhizostomeae), Cyanea nozakii (Semaeostomeae), and Aurelia aurita (Semaeostomeae). Target strength (TS) at 38, 120, and 200 kHz, specific density, and sound speed were measured with live specimens. Specific densities were measured using the displacement–volume–weight and the dual-density methods. The sound speeds were estimated using the time-of-flight method. The reduced TS (RTS), i.e. the TS normalized by bell area, was smaller for N. nomurai (bell diameter range 19–38 cm) than for C. nozakii (bell diameter range 30–40 cm), and the differences in RTS between the species were 17.8, 12.6, and 5.8 dB at 38, 120, and 200 kHz, respectively. The respective sound-speed contrast h and density contrast g were 1.0008 ± 0.009 (mean ± s.d.) and 1.004 ± 0.015 for N. nomurai; 1.038 and 1.073 for one C. nozakii; and 1.0001 ± 0.025 and 0.989 ± 0.019 for A. aurita.

2013 ◽  
Vol 71 (3) ◽  
pp. 597-603 ◽  
Author(s):  
Donhyug Kang ◽  
Jusam Park ◽  
Seom-Kyu Jung ◽  
Sungho Cho

Abstract Acoustic target strength (TS) measurements were made of ex situ giant jellyfish Nemopilema nomurai Kishinouye at 38 and 120 kHz. These TS data may be useful for developing acoustic scattering models, and surveying giant jellyfish distributions and biomasses. Each jellyfish was tethered in seawater using a monofilament line that vertically penetrated its bell's centre. During the acoustic measurements, an underwater video camera was used to continuously monitor the jellyfish's behaviour. Acoustic measurements were made using split-beam transducers. TS measurements were made of 27 individual jellyfish, but data were analysed for 23 specimens (bell diameter in air, Dair = 21–65 cm) at 38 kHz, and 19 specimens (Dair = 21–46 cm) at 120 kHz, respectively. Least-squares regression fits of TS vs. log(Dair) were TS38kHz = 20•log10Dair–82.7 (r = 0.76) and TS120kHz = 20•log10Dair–86.7 (r = 0.79). The mean TS values at 38 and 120 kHz, using the average Dair = 40.3 cm and 35.5 cm, respectively, were −50.6 and −55.7 dB. The reduced TS, a function of the ratio of Dair to wavelength (λ), was RTS(Dair/λ) = −6.1•log10(Dair/λ) –36.1 (r = 0.51). These RTS values decreased with increasing Dair/λ. Symbiotic medusa shrimp (Latreutes anoplonyx Kemp) contributed negligible bias to our TS measurements of giant jellyfish. These ex situ TS measurements may be used in acoustic surveys to estimate the distributions and biomasses of N. nomurai.


2003 ◽  
Vol 60 (3) ◽  
pp. 508-515 ◽  
Author(s):  
Dezhang Chu ◽  
Peter H. Wiebe ◽  
Nancy J. Copley ◽  
Gareth L. Lawson ◽  
Velmurugu Puvanendran

Abstract To study the acoustic signatures of Atlantic cod (Gadus morhua) at different biological stages from eggs to early-stage larvae (<37 days post-hatch), we conducted a series of experiments to estimate their sound-speed and density contrasts. A laboratory version of the “Acoustic Properties of Zooplankton” system was used. Sound speed was estimated by means of travel time between two transducers using a broadband acoustic signal (∼300–600 kHz). Density was estimated using a dual-density method in which two fluids of different densities were employed. It was found that the density contrasts of cod eggs and early-stage larvae were nearly all slightly less than unity (0.969–0.998), while the effective sound-speed contrasts were only slightly greater than unity (1.017–1.024) for eggs and yolk-sac stage larvae (<5 days post-hatch), and increased significantly (>1.130) for larvae older than 16 days. This change in sound-speed contrast reflected the transition of the swimbladder from an uninflated state to an inflated state. The regression relation between estimated target strength at 500 kHz and larval length in centimetres was found to be TS = 176.1 log10L − 82.4(dB). The inflation ratio of the swimbladder for early-stage larvae was an exponential function of time. The predicted period of time until full swimbladder inflation was 43.3 days.


Author(s):  
Kunihiko Ishihara

As tube banks are set in a duct in a boiler and a heat exchanger, the resonance phenomenon or the self sustained tone are generated due to the interference between vortex shedding and the acoustic characteristics of the duct. It is necessary to know the resonance frequency of the duct, namely sound speed, for avoiding any trouble that may arise. In general, it is said that the sound speed decreases in the duct with tube banks and an evaluation formula is given. However, this formula is often used for the perpendicular direction of the flow. We wanted to know whether this formula would be able to be used for the flow direction and for various arrays of patterns or not. In this paper, the applicability of this expression is discussed by using FEM analysis and experiments.


2005 ◽  
Vol 71 (4) ◽  
pp. 571-577 ◽  
Author(s):  
MIYUKI HIROSE ◽  
TOHRU MUKAI ◽  
DOOJIN HWANG ◽  
KOHJI IIDA

2006 ◽  
Vol 120 (5) ◽  
pp. 3106-3106
Author(s):  
Miyuki Hirose ◽  
Tohru Mukai ◽  
Kohji Iida ◽  
Doojin Hwang

2019 ◽  
Vol 283 ◽  
pp. 03007
Author(s):  
Jinyu Li ◽  
Dejiang Shang ◽  
Yan Xiao

Low-frequency acoustic scatterings from a finite cylindrical shell are numerically analyzed by FEM. The simulation results show that the acoustic-scattering field in waveguide has lots of frequency-related sidelobes, while no sidelobes exist in free space at low frequencies. The simulation also indicates that the module value in waveguide can be almost 20 dB larger than that in free space at low frequency, which is caused by the ocean boundaries. We also demonstrate that when the incident wave direction is normal to the target at low frequency, the target strength will be maximum and the distribution of the acoustic-scattering field is axisymmetric about the incident waving direction. Meanwhile, the acoustic-scattering field is also related to the impedance of the seabed, and the change of the impedance makes just a little contribution to the scattering field. Finally, the influence of different target locations is analyzed, including the targets near the sea surface, seabed and the middle region of the ocean waveguide, respectively. From simulation results, it is evident that the distribution of the acoustic-scattering field at low frequency has a little difference, which is smaller than 0.5 dB with various target locations, and the change is frequency and boundary-related.


2014 ◽  
Vol 71 (9) ◽  
pp. 2550-2563 ◽  
Author(s):  
Kaylyn N. Becker ◽  
Joseph D. Warren

Abstract We measured the density and sound speed contrasts relative to seawater of Northeast Pacific zooplankton. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation (s.d.) for euphausiid density contrast were 1.059 ± 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area ∼4–10 d apart were significantly higher (p< 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and s.d. for euphausiid sound speed were 1.019 ± 0.009. Euphausiid mass was calculated from measured density and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid volume could be accurately estimated from two-dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Data from this study can improve the accuracy of theoretical acoustic scattering models for these taxa, resulting in more accurate estimates of zooplankton biomass in this region.


2009 ◽  
Vol 75 (3) ◽  
pp. 545-552 ◽  
Author(s):  
Hiroki Yasuma ◽  
Ryo Nakagawa ◽  
Takashi Yamakawa ◽  
Kazushi Miyashita ◽  
Ichiro Aoki

Sign in / Sign up

Export Citation Format

Share Document