scholarly journals Implications of late-in-life density-dependent growth for fishery size-at-entry leading to maximum sustainable yield

2018 ◽  
Vol 75 (4) ◽  
pp. 1296-1305 ◽  
Author(s):  
Rob van Gemert ◽  
Ken H Andersen

Abstract Currently applied fisheries models and stock assessments rely on the assumption that density-dependent regulation only affects processes early in life, as described by stock–recruitment relationships. However, many fish stocks also experience density-dependent processes late in life, such as density-dependent adult growth. Theoretical studies have found that, for stocks which experience strong late-in-life density dependence, maximum sustainable yield (MSY) is obtained with a small fishery size-at-entry that also targets juveniles. This goes against common fisheries advice, which dictates that primarily adults should be fished. This study aims to examine whether the strength of density-dependent growth in actual fish stocks is sufficiently strong to reduce optimal fishery size-at-entry to below size-at-maturity. A size-structured model is fitted to three stocks that have shown indications of late-in-life density-dependent growth: North Sea plaice (Pleuronectes platessa), Northeast Atlantic (NEA) mackerel (Scomber scombrus), and Baltic sprat (Sprattus sprattus balticus). For all stocks, the model predicts exploitation at MSY with a large size-at-entry into the fishery, indicating that late-in-life density dependence in fish stocks is generally not strong enough to warrant the targeting of juveniles. This result lends credibility to the practise of predominantly targeting adults in spite of the presence of late-in-life density-dependent growth.

1987 ◽  
Vol 44 (S2) ◽  
pp. s339-s348 ◽  
Author(s):  
R. B. Deriso

There is a unique size of entry into the fishable population that maximizes yield per recruit when an F0.1 fishing criterion is applied to the simple theory of fishing developed by Beverton and Holt in 1957. I define such a pair of parameters (size of entry, F0.1 value) to be the optimal F0.1 criteria and show that they are characterized by the single quantity M/K. A quantitative relationship is established between maximum sustainable yield and the optimal F0.1 criteria for a model population where recruitment is governed by a Ricker stock–recruitment function. This new theory is applied to three fish stocks: Pacific halibut (Hippoglossus stenolepis), western Lake Erie walleye (Stizostedion vitreum vitreum), and Bering Sea Pacific cod (Gadus macrocephalus).


2018 ◽  
Vol 75 (6) ◽  
pp. 1864-1870 ◽  
Author(s):  
Rob van Gemert ◽  
Ken H Andersen

Abstract During the 20th century, many large-bodied fish stocks suffered from unsustainable fishing pressure. Now, signs of recovery are appearing among previously overfished large-bodied fish stocks. This new situation raises the question of whether current fisheries advice and management procedures, which were devised and optimized for depleted stocks, are well-suited for the management of recovered stocks. We highlight two challenges for fisheries advice and management: First, recovered stocks are more likely to show density-dependent growth. We show how the appearance of density-dependent growth will make reference points calculated with current procedures inaccurate. Optimal exploitation of recovered large-bodied fish stocks will therefore require accounting for density-dependent growth. Second, we show how a biomass increase of large-bodied piscivorous fish will lead to a reverse trophic cascade, where their increased predation mortality on forage fish reduces forage fish productivity and abundance. The resulting decrease in maximum sustainable yield of forage fish stocks could lead to conflicts between forage and large-piscivore fisheries. Avoiding such conflicts requires that choices are made between the exploitation of interacting fish stocks. Failure to account for the changed ecological state of recovered stocks risks creating new obstacles to sustainable fisheries management.


2013 ◽  
Vol 70 (6) ◽  
pp. 1075-1080 ◽  
Author(s):  
Christopher M. Legault ◽  
Elizabeth N. Brooks

Abstract Legault, C. M., and Brooks, E. N. 2013. Can stock–recruitment points determine which spawning potential ratio is the best proxy for maximum sustainable yield reference points? – ICES Journal of Marine Science, 70: 1075–1080. The approach of examining scatter plots of stock–recruitment (S–R) estimates to determine appropriate spawning potential ratio (SPR)-based proxies for FMSY was investigated through simulation. As originally proposed, the approach assumed that points above a replacement line indicate year classes that produced a surplus of spawners, while points below that line failed to achieve replacement. In practice, this has been implemented by determining Fmed, the fishing mortality rate that produces a replacement line with 50% of the points above and 50% below the line. A new variation on this approach suggests FMSY proxies can be determined by examining the distribution of S–R points that are above or below replacement lines associated with specific SPRs. Through both analytical calculations and stochastic results, we demonstrate that this approach is fundamentally flawed and that in some cases the inference is diametrically opposed to the method's intended purpose. We reject this approach as a tool for determining FMSY proxies. We recommend that the current proxy of F40% be maintained as appropriate for a typical groundfish life history.


2008 ◽  
Vol 65 (4) ◽  
pp. 588-599 ◽  
Author(s):  
Stephen Ralston ◽  
Michael R O’Farrell

Fishing mortality is rarely, if ever, evenly distributed over space, yet this is a common assumption of many fisheries models. To evaluate the effect of spatial heterogeneity in fishing mortality on yield, we constructed age-structured models that allowed for differing levels of fishing in three regions within the boundaries of a stock and explored alternative assumptions about the life stage in which density-dependent compensation operates. If the fishing mortality rate (F) is not excessive (i.e., F ≤ FMSY defined for the spatially homogeneous case; MSY, maximum sustainable yield), simulations demonstrated that minor to moderate spatial variation in fishing intensity does not impact sustainable yield. However, if fishing mortality is excessive (F > FMSY), spatial variation in fishing intensity often improves yield and can actually produce yields in excess of MSY when compensation occurs after dispersal, and the density-dependent recruitment rate is a function of the local density of adults. The yield premium generated in these simulations by postdispersal density dependence is due to a low level of compensatory mortality in heavily fished areas coupled with dispersal of propagules into these areas from lightly fished adjacent regions.


1998 ◽  
Vol 55 (8) ◽  
pp. 1971-1982 ◽  
Author(s):  
Mikko Heino

Mortality caused by harvesting can select for life history changes in the harvested stock. Should this possibility be taken into account in the management of renewable resources? I compare the performance of different harvest strategies when evolutionary change is accounted for with the help of an age-structured population dynamics model. Assuming that age of first reproduction is the only evolving trait, harvesting of only mature individuals selects for delayed maturation and results in increased sustainable yields. Unselective harvesting of both mature and immature fish selects for earlier maturation which causes the sustainable yield to decrease. Constant stock size and constant harvest rate strategies perform equally well in terms of maximum sustainable yield, both before and after evolutionary change. The maximum sustainable yield for fixed-quota strategies is lower. All those strategies have similar evolutionary consequences given a similar average harvest rate. Coevolutionary dynamics between fish stock and the stock manager indicate that the evolutionary benefits of selective harvesting are attainable without incurring yield losses in the near future.


1987 ◽  
Vol 44 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Randall M. Peterman ◽  
Michael J. Bradford

We tested whether English sole (Parophrys vetulus) in Oregon and Washington waters show density-dependent growth. We found that there is a significant negative effect of cohort abundance on annual growth rate of age 1 fish, but not on growth of ages 2–7. Unlike most similar studies of density dependence, this result was not confounded by time trends in abundance and growth. The multiple regression of age 1 growth on cohort abundance and temperature accounted for 91% of the interannual variation in growth, which was a significant increase in r2 over that of the previously published relation with temperature alone. However, stock assessments which take into account only the previously published temperature effect on growth for this stock will probably not seriously overestimate the impact of management regulations which increase cohort abundance.


1994 ◽  
Vol 120 (1) ◽  
pp. 99-126 ◽  
Author(s):  
Bernard Dacorogna ◽  
François Weissbaum ◽  
Roger Arditi

1986 ◽  
Vol 43 (4) ◽  
pp. 889-892 ◽  
Author(s):  
Rögnvaldur Hannesson

I consider the impact of density-dependent growth on the optimal harvesting of a year-class of fish. In general, density dependence makes "thinning" of the year-class a desirable strategy. Moderate density dependence implies that thinning should be gradual, even in the case of zero harvesting costs where the optimal harvesting strategy would otherwise be instantaneous harvesting. Strong density dependence calls for an immediate thinning at an early date, in the case of zero harvesting costs.


2006 ◽  
Vol 64 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Kyle W. Shertzer ◽  
Michael H. Prager

Abstract Shertzer, K. W., and Prager, M. H. 2007. Delay in fishery management: diminished yield, longer rebuilding, and increased probability of stock collapse. ICES Journal of Marine Science, 64: 149–159. When a stock is depleted, catch reductions are in order, but typically they are implemented only after considerable delay. Delay occurs because fishery management is political, and stricter management, which involves short-term economic loss, is unpopular. Informed of stock decline, managers often hesitate, perhaps pondering the uncertainty of scientific advice, perhaps hoping that a good year class will render action moot. However, management delay itself can have significant costs, when it exacerbates stock decline. To examine the biological consequences of delay, we simulated a spectrum of fisheries under various degrees of delay in management. Increased delay required larger catch reductions, for more years, to recover benchmark stock status (here, spawning-stock biomass at maximum sustainable yield). Management delay caused stock collapse most often under two conditions: (1) when the stock–recruitment relationship was depensatory, or (2) when catchability, unknown to the assessment, was density-dependent and fishing took juveniles. In contrast, prompt management resulted in quicker recoveries and higher cumulative yields from simulated fisheries. Benefits to stock biomass and fishery yield can be high from implementing management promptly.


2005 ◽  
Vol 360 (1453) ◽  
pp. 163-170 ◽  
Author(s):  
J. R. Beddington ◽  
G. P. Kirkwood

Using life–history invariants, this paper develops techniques that allow the estimation of maximum sustainable yield and the fishing mortality rate that produces the maximum yield from estimates of the growth parameters, the length at first capture and the steepness of the stock recruitment relationship. This allows sustainable yields and fishing capacity to be estimated from sparse data, such as those available for developing country fisheries.


Sign in / Sign up

Export Citation Format

Share Document