piscivorous fish
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 25)

H-INDEX

29
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3581
Author(s):  
Vasco Menconi ◽  
Perla Tedesco ◽  
Paolo Pastorino ◽  
Ivano Confortini ◽  
Giuseppe Esposito ◽  
...  

The nematode Eustrongylides excisus is a parasite of freshwater fish- and fish-eating birds, with known differences on prevalence values among fish species. Thus, the present study aims to explore the hypothesis that the feeding behavior and the size of fish belonging to different trophic levels could explain such differences. For that, 14 sampling sites were selected to perform a fish parasitological survey on Lake Garda (Italy) during spring-summer 2020. Amplification of nuclear ribosomal internal transcribed spacer (ITS) rDNA sequences of nematodes morphologically ascribable to the genus Eustrongylides allowed to identify them as E. excisus. From the five studied fish species (Perca fluviatilis, Lepomis gibbous, Coregonus lavaretus, Alosa fallax lacustris and Micropterus salmoides), only three presented the parasite E. excisus: P. fluviatilis, L. gibbous and M. salmoides, with significant differences in prevalence values among species (p = 0.002). Additionally, there were differences in prevalence values within the same fish species captured from different sampling sites. Findings showed that mainly piscivorous fish were positive for E. excisus and how the prevalence was highest in M. salmoides. As regard the fish size, a negative correlation between body size and E. excisus was found in P. fluviatilis due to the feeding habit of juvenile perch which feed mainly zooplankton and benthic invertebrates (i.e., oligochaetes, which are the first intermediate hosts of E. excisus). The study findings advance novel knowledge in the field of pathogens of zoonotic importance in the aquatic environment.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2345
Author(s):  
Boris A. Levin ◽  
Aleksandra S. Komarova ◽  
Oksana L. Rozanova ◽  
Alexander S. Golubtsov

Trophic resource partitioning is one of the main drivers of adaptive radiation. The evolutionary diversification of large African barbs, the genus Labeobarbus, seems to be related to mouth polymorphism. The chisel-mouthed or scraping phenotype has repeatedly evolved within Labeobarbus. At least five ecomorphs with a scraping mouth morphology were detected in the waters of the Ethiopian Highlands and can be provisionally classified into two groups: (i) “Varicorhinus”-like, and (ii) “Smiling”-like. Previously, all Labeobarbus with a scraping-mouth morphology were considered to be periphyton feeders. Using data on morphology, diet and stable isotope ratios (C and N), we addressed the question: does a scraping-mouth morphology predict feeding on periphyton? Our study revealed that five scraper ecomorphs exhibited three main feeding modes: (i) periphyton-eating, (ii) herbivory–detritivory, and (iii) insectivory. Two cases of the parallel divergence of sympatric ecomorphs with distinct feeding modes (herbivory–detritivory vs. insectivory) were revealed in two geographically isolated basins. A significant difference in δ15N values was detected among sympatric scraper ecomorphs. A periphytonophagous scraper was rich in δ15N values that are comparable with those in sympatric piscivorous fish. This data sheds light on the possibility of the utilization of periphyton as a protein-rich food by fishes.


Author(s):  
Collin James Farrell ◽  
Brett M Johnson ◽  
Adam G Hansen ◽  
Christopher A Myrick

We compared mercury bioaccumulation in triploid and diploid walleye (Stizostedion vitreum) in Narraguinnep Reservoir, Colorado, USA, and made several hypotheses that sex- and ploidy-specific differences in the allocation of energy towards reproductive development would affect mercury bioaccumulation. We tested our hypotheses with linear regression and a bioenergetics model informed by field data. We found diploid walleye had 28-31% higher mercury concentrations on average than triploids, but there were no differences between sexes of the same ploidy. Triploids of mature age exhibited minimal gonadal development when compared to diploids. After accounting for reproductive investment, the bioenergetics model accounted for most of the observed difference in average mercury concentration between ploidies for females. Conversely, the energetic cost of producing testes was low, and gonadal development could not explain observed patterns for males. Costs associated with elevated swimming activity and metabolism by diploid males relative to other groups could explain the difference but requires further investigation. The use of triploid fish in stocking programs could prove useful for reducing mercury in fish destined for human consumption.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dan Liu ◽  
Yongjun Tian ◽  
Shuyang Ma ◽  
Jianchao Li ◽  
Peng Sun ◽  
...  

Due to persistent fishing expansion in the China Seas over the past six decades, fisheries resources have been over-exploited; as a result, exploited fish have become smaller in size and younger in age. Marine piscivorous fish constituted a large portion of Chinese fisheries catch, long-term variability of which has rarely been investigated despite intense fishing pressure and climate change. In this study, we attempt to identify their responses to climate change and fishing activities and to provide scientific basis for sustainable exploitation of these resources. Seven taxa from pelagic to demersal species inhabiting either cold-water or warm-water were selected to represent the piscivorous fish assemblage in the China Seas. Total catch of these piscivorous fish in the China Seas increased during the early 1990s, stabilizing around 1.2 million tons after 1997. Principal component analysis (PCA) showed evident interannual-decadal variabilities in the catch of these fish with step changes around 1985/86 and 1997/98. Individual taxa, however, showed different trends in catches with sharks, rays, and lizardfishes manifesting downward trends while Pacific cod, eels, and hairtail increasing. Common dolphinfish and Japanese-Spanish mackerel increased largely in the 1990s but declined slightly during the 2000s. Although there were temporal overlaps between climate change and fishing variabilities, results of gradient forest analyses indicated that fishing effort imposed the most important influence on piscivorous fish. And among all climate variables explored in this study, sea surface temperature (SST) especially that of the East China Sea, had greatest impacts on variations in piscivorous fish catch, which may have been gradually exacerbated by the continued high fishing intensity. In addition, significant changes were identified in the life history traits in the species we evaluated, such as reduced average body sizes and truncated age compositions, strongly indicating the effect of fishing. We therefore advocate precautionary fishery practices under climate change.


2021 ◽  
Vol 662 ◽  
pp. 209-214
Author(s):  
A Whitfield

The key criticism by Baker & Sheaves (2021; Mar Ecol Prog Ser 662:205-208) of the Whitfield (2020; Mar Ecol Prog Ser 649:219-234) estuarine littoral predation paradigm review is that shallow water fish nursery habitats contain abundant predator assemblages which may create high predation pressure on the juvenile fish cohorts that occupy these areas. The primary arguments supporting Baker & Sheaves’ criticism arise from a series of papers published by them on piscivorous fish predation in certain tropical Australian estuaries. The counter-argument that shallow littoral areas in estuaries do indeed provide small juvenile fishes with refuge from small and large piscivorous fishes is provided by published papers from 4 different estuary types in South Africa, covering both subtropical and warm-temperate systems. Based on the overall published information, the argument for shallow (<1 m depth) estuarine waters providing major protection for newly settled juveniles appears to be weak in northern Australia but strong in South Africa. The global situation, as outlined in this response, is more supportive of low piscivorous predation in shallow nursery habitats, but further targeted research is needed before we can confirm that littoral estuarine waters are indeed a universal keystone attribute in this regard.


2021 ◽  
Vol 118 (6) ◽  
pp. e1917079118 ◽  
Author(s):  
Floor H. Soudijn ◽  
P. Daniël van Denderen ◽  
Mikko Heino ◽  
Ulf Dieckmann ◽  
André M. de Roos

Fisheries have reduced the abundances of large piscivores—such as gadids (cod, pollock, etc.) and tunas—in ecosystems around the world. Fisheries also target smaller species—such as herring, capelin, and sprat—that are important parts of the piscivores’ diets. It has been suggested that harvesting of these so-called forage fish will harm piscivores. Multispecies models used for fisheries assessments typically ignore important facets of fish community dynamics, such as individual-level bioenergetics and/or size structure. We test the effects of fishing for both forage fish and piscivores using a dynamic, multitrophic, size-structured, bioenergetics model of the Baltic Sea. In addition, we analyze historical patterns in piscivore-biomass declines and fishing mortalities of piscivores and forage fish using global fish-stock assessment data. Our community-dynamics model shows that piscivores benefit from harvesting of their forage fish when piscivore fishing mortality is high. With substantial harvesting of forage fish, the piscivores can withstand higher fishing mortality. On the other hand, when piscivore fishing mortality is low, piscivore biomass decreases with more fishing of the forage fish. In accordance with these predictions, our statistical analysis of global fisheries data shows a positive interaction between the fishing mortalities of forage-fish stocks and piscivore stocks on the strength of piscivore-biomass declines. While overfishing of forage fish must be prevented, our study shows that reducing fishing pressures on forage fish may have unwanted negative side effects on piscivores. In some cases, decreasing forage-fish exploitation could cause declines, or even collapses, of piscivore stocks.


Author(s):  
Koh Hasegawa ◽  
Kentaro Honda ◽  
Taku Yoshiyama ◽  
Kengo Suzuki ◽  
Sho Fukui

Predator-prey interactions must be considered when aiming to enhance populations by releasing artificially reared individuals into natural environments. Released individuals create an abundance of prey for predators, and a basic hypothesis of predator-prey interactions suggests that predators select large prey due to the high caloric content. An alternative hypothesis is that small individuals are vulnerable to predation due to their poor predator avoidance. This study tested these hypotheses using stocked chum (Oncorhynchus keta) and masu (O. masou) salmon fry and piscivorous salmonids in marine and riverine habitats in Hokkaido, Japan. Stomach contents were sampled from predators, and fork length of prey fry was measured. Then, their fork length was compared with whole stocked fry (range of mean fork length (±SD): 45.8±2.55-49.2±2.76 mm) for each habitat. As a result, prey fry were ca. 3-6% smaller than whole stocked fry, even under a prey abundant condition (i.e. just after hatchery reared salmon fry were stocked). Piscivorous salmonids pursue schooling fry, and small fry may be easily caught due to their slow speed in avoiding predators.


2020 ◽  
Vol 649 ◽  
pp. 219-234 ◽  
Author(s):  
AK Whitfield

For many decades, the role of estuaries as important nursery areas for fishes was accepted as fact by scientists and environmental managers. At the turn of the 21st century, a question mark was raised in relation to the reduced predation component of the nursery function, with some scientists contending that both large and small piscivorous fish species had access to the estuarine habitats that juvenile fishes in estuaries occupied. If true on a global scale, the nursery designation for these habitats would be compromised and the long-held paradigm that estuaries are important nursery areas for fishes would need to be revised. In this review, I examine the nature of fish nursery areas in estuarine littoral habitats from a mainly predation perspective and, based on a variety of ichthyofaunal and avifaunal studies, come to the conclusion that apart from a few selected estuarine systems, there is limited predation on juvenile fishes in these particular areas. This, coupled with the abundant suitable food resources for juvenile fish from different trophic categories, shelter from high-energy marine wave action and biological connectivity between a variety of submerged and emergent macrophyte communities, renders shallow estuarine littoral areas ideal nursery areas for the juveniles of mostly euryhaline marine fish species, the dominant component of estuarine ichthyofaunas globally. In addition, there are strong indications from the fossil record that these littoral estuarine nursery areas have been functioning since the Devonian, more than 350 million years ago.


Author(s):  
Marcos A. L. Franco ◽  
Alejandra F. G. N. Santos ◽  
Abílio S. Gomes ◽  
Marcelo G. de Almeida ◽  
Carlos E. de Rezende

AbstractEnvironmental factors, size-related isotopic changes of the most abundant species and isotopic niche overlap were investigated using stable isotopes in order to evaluate spatial changes of fish trophic guilds in the Araruama Lagoon. Based on 440 muscle samples, 17 fish species were grouped into five trophic guilds. Mean salinity was above 40 at both sites sampled and a significant spatial difference was observed. The highest δ13C mean value was observed for an omnivorous species, whereas the lowest carbon signatures were found for the three fish species belonging to the planktivorous guild. Analysis of the carbon signature of fish species in lower trophic levels showed influence of salinity variation, whilst size appeared to play a role for others. A narrow δ15N difference was observed, but the piscivorous fish species showed the highest δ15N values. The Standard Ellipses Analysis (SEA) detected spatial differences and varying degrees of isotopic niche overlap among trophic guilds, but the percentages of most overlaps (<60%) suggest that, to some extent, the guilds had a unique isotopic niche space. These results are in agreement with data previously reported for the Araruama Lagoon, that found the same prey items with varying relative importance among the most abundant species. Further studies are necessary to understand how the interaction between salinity and other factors, such as migration patterns, changes in prey availability, changes in contribution of primary sources and changes in baseline isotopic signatures could affect the stable isotope signatures shown here.


Sign in / Sign up

Export Citation Format

Share Document