scholarly journals Entransy dissipation analysis of heat exchangers under heat leakages and varying heat capacity ratios

2019 ◽  
Vol 14 (2) ◽  
pp. 135-141
Author(s):  
Roopesh Tiwari ◽  
Govind Maheshwari
1988 ◽  
Vol 110 (1) ◽  
pp. 54-59 ◽  
Author(s):  
A. Pignotti ◽  
P. I. Tamborenea

The thermal effectiveness of a TEMA E shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual symplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a function of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.


2005 ◽  
Author(s):  
D. K. Tafti

The paper describes two- and three-dimensional computer simulations which are used to study fundamental flow and thermal phenomena in multilouvered fins used for air-side heat transfer enhancement in compact heat exchangers. Results pertaining to flow transition, thermal wake interference, and fintube junction effects are presented. It is shown that a Reynolds number based on flow path rather than louver pitch is more appropriate in defining the onset of transition, and characteristic frequencies in the louver bank scale better with a global length scale such as fin pitch than with louver pitch or thickness. With the aid of computer experiments, the effect of thermal wakes is quantified on the heat capacity of the fin as well as the heat transfer coefficient, and it is established that experiments which neglect accounting for thermal wakes can introduce large errors in the measurement of heat transfer coefficients. Further, it is shown that the geometry of the louver in the vicinity of the tube surface has a large effect on tube heat transfer and can have a substantial impact on the overall heat capacity.


1999 ◽  
Vol 121 (4) ◽  
pp. 241-246 ◽  
Author(s):  
F. E. M. Saboya ◽  
C. E. S. M. da Costa

From the second law of thermodynamics, the concepts of irreversibility, entropy generation, and availability are applied to counterflow, parallel-flow, and cross-flow heat exchangers. In the case of the Cross-flow configuration, there are four types of heat exchangers: I) both fluids unmixed, 2) both fluids mixed, 3) fluid of maximum heat capacity rate mixed and the other unmixed, 4) fluid of minimum heat capacity rate mixed and the other unmixed. In the analysis, the heat exchangers are assumed to have a negligible pressure drop irreversibility. The Counterflow heat exchanger is compared with the other five heat exchanger types and the comparison will indicate which one has the minimum irreversibility rate. In this comparison, only the exit temperatures and the heat transfer rates of the heat exchangers are different. The other conditions (inlet temperatures, mass flow rates, number of transfer units) and the working fluids are the same in the heat exchangers.


1986 ◽  
Vol 108 (1) ◽  
pp. 141-146 ◽  
Author(s):  
A. Pignotti

Formulas are derived for the effectiveness of a series assembly of two divided-flow exchangers, as a function of the heat capacity rate ratio, and the partial effectivenesses of the components. Six possible connections are discussed: overall parallel flow and counterflow, with either mixing of the intermediate divided streams, or direct or crossed coupling of the same. It is shown that when both exchangers are alike, and direct coupling is used, the simplifying mixing assumption leads to a systematic overestimate of the effectiveness of the assembly. The size of this effect is discussed and illustrated with explicit solutions for TEMA J exchangers with one and two tube passes.


1989 ◽  
Vol 111 (2) ◽  
pp. 300-313 ◽  
Author(s):  
S. G. Kandlikar ◽  
R. K. Shah

Plate heat exchangers are classified on the basis of number of passes on each side and the flow arrangement in each channel, taking into account the end plate effects. This results in four configurations each for the 1–1 (1 Pass–1 Pass), 2–1, 2–2, 3–3, 4–1, 4–2, and 4–4 arrangements, and six configurations for the 3–1 arrangement. These arrangements are analyzed using the Gauss–Seidel iterative finite difference method; the plate arrangement that yields the highest effectiveness in each pass configuration is identified. Comprehensive results are presented in tabular form for the temperature effectiveness P1 and log-mean temperature difference correction factor F as functions of the number of transfer units NTU1, the heat capacity rate ratio R1, and the total number of thermal plates. On the basis of these results, specific guidelines are outlined for the selection of appropriate plate heat exchanger configurations.


2020 ◽  
Vol 178 ◽  
pp. 01024
Author(s):  
Nikolay Monarkin ◽  
Anton Sinitsyn ◽  
Mikhail Pavlov ◽  
Timur Akhmetov

The influence of various parameters of stationary switching regenerative heat exchangers used for ventilation on its thermal efficiency was studied. Considered are the geometric (length, diameter and wall thickness of a single equivalent nozzle channel), thermophysical (density and heat capacity of the nozzle material) and operation (air flow through the regenerator and the time of one stage of accumulation/regeneration of thermal energy) parameters.


2003 ◽  
Author(s):  
Tony D. Chen

Air-cooled heat exchangers with three tube rows are commonly seen in domestic air-conditioning systems. The analytical solutions of heat exchanger effectiveness for three-row plate fin-and-tube heat exchangers with alternating circuitries have been derived and expressed explicitly in terms of heat capacity ratio and number of transfer units in the recent study. These set of exact solutions serve as a basic tool in designing heat exchanger circuitry to its most accurate possible effectiveness. Comparison of plate-fin-tube heat exchanger effectiveness between airside unmixed and mixed for three-row configurations shows that the effectiveness could be different from 0.3 to 2.4% for the NTUs (Number of Thermal Units) range from 1.0 to 3.0. On the other hand, the result of the comparison of effectiveness between identical and alternating circuiting for 3-row crossflow heat exchangers shows that alternating circuiting could have less effectiveness than identical circuiting from 0.4 to 8.8% in the NTUs range from 1.0 to 3.0. Nevertheless, alternating circuit has its benefit for lower NTU cases, result shows that it could have 1.7 to 0.1% advantages over identical flow arrangement for 2-row heat exchangers with NTUs range from 1.0 to 2.0.


Sign in / Sign up

Export Citation Format

Share Document