scholarly journals Dirichlet Problem for Maximal Graphs of Higher Codimension

Author(s):  
Yang Li

Abstract We consider the Dirichlet boundary value problem for graphical maximal submanifolds inside Lorentzian-type ambient spaces and obtain general existence and uniqueness results that apply to any codimension.

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Wen-Xue Zhou ◽  
Jigen Peng

The existence and uniqueness of the solutions to the Dirichlet boundary value problem in the Banach spaces is discussed by using the fixed point theory of condensing mapping, doing precise computation of measure of noncompactness, and calculating the spectral radius of linear operator.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1241-1249 ◽  
Author(s):  
Asghar Ahmadkhanlu

The aim of this work is to study a class of boundary value problem including a fractional order differential equation. Sufficient and necessary conditions will be presented for the existence and uniqueness of solution of this fractional boundary value problem.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imed Bachar ◽  
Hassan Eltayeb

Abstract We establish the existence, uniqueness, and positivity for the fractional Navier boundary value problem: $$\begin{aligned} \textstyle\begin{cases} D^{\alpha }(D^{\beta }\omega )(t)=h(t,\omega (t),D^{\beta }\omega (t)), & 0< t< 1, \\ \omega (0)=\omega (1)=D^{\beta }\omega (0)=D^{\beta }\omega (1)=0, \end{cases}\displaystyle \end{aligned}$$ { D α ( D β ω ) ( t ) = h ( t , ω ( t ) , D β ω ( t ) ) , 0 < t < 1 , ω ( 0 ) = ω ( 1 ) = D β ω ( 0 ) = D β ω ( 1 ) = 0 , where $\alpha,\beta \in (1,2]$ α , β ∈ ( 1 , 2 ] , $D^{\alpha }$ D α and $D^{\beta }$ D β are the Riemann–Liouville fractional derivatives. The nonlinear real function h is supposed to be continuous on $[0,1]\times \mathbb{R\times R}$ [ 0 , 1 ] × R × R and satisfy appropriate conditions. Our approach consists in reducing the problem to an operator equation and then applying known results. We provide an approximation of the solution. Our results extend those obtained in (Dang et al. in Numer. Algorithms 76(2):427–439, 2017) to the fractional setting.


2014 ◽  
Vol 12 (1) ◽  
Author(s):  
Irena Rachůnková ◽  
Jan Tomeček

AbstractThe paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.


2003 ◽  
Vol 10 (3) ◽  
pp. 495-502
Author(s):  
Alexander Domoshnitsky

Abstract In this paper, oscillation and asymptotic properties of solutions of the Dirichlet boundary value problem for hyperbolic and parabolic equations are considered. We demonstrate that introducing an arbitrary constant delay essentially changes the above properties. For instance, the delay equation does not inherit the classical properties of the Dirichlet boundary value problem for the heat equation: the maximum principle is not valid, unbounded solutions appear while all solutions of the classical Dirichlet problem tend to zero at infinity, for “narrow enough zones” all solutions oscillate instead of being positive. We establish that the Dirichlet problem for the wave equation with delay can possess unbounded solutions. We estimate zones of positivity of solutions for hyperbolic equations.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Jiraporn Reunsumrit ◽  
Thanin Sitthiwirattham

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document