Symmetric Quantum Sets and L-Algebras

Author(s):  
Wolfgang Rump

Abstract Quantum analogues of sets are defined by two simple assumptions, allowing enumeration, reminiscent of the Gram–Schmidt orthogonalization process. It is shown that any symmetric quantum set is a classical set of irreducible components, and that each irreducible component of size $>3$ is representable by an orthomodular space over a skew field with involution. For finite or sufficiently large irreducible components, invariance of quantum cardinality is proved. Topological quantum sets are introduced as quantum analogues of topological spaces; irreducible ones of size $>3$ are shown to be representable by Hilbert spaces over ${\mathbb{R}}$, ${\mathbb{C}}$, or ${\mathbb{H}}$. Symmetric quantum sets are characterized as a class of $L$-algebras with an intrinsic geometry, and they are shown to be equivalent to Piron’s quantum formalism. Equivalences between symmetric quantum sets and several other structures are established. To any symmetric quantum set, a group with a right invariant lattice structure is associated as a complete invariant. A simple and self-contained proof of Solèr’s theorem is included, which is used to prove that sufficiently large irreducible symmetric quantum sets come from a classical Hilbert space.

2003 ◽  
Vol 55 (4) ◽  
pp. 766-821 ◽  
Author(s):  
Thomas Kerler

AbstractWe develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology ofU(1)-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra= ℤ/2 n ⋊ Λ* ℝ2on the other side. We find that both TQFT's are SL(2; ℝ)-equivariant functors and, as such, are isomorphic. The SL(2; ℝ)-action in the Hennings construction comes from the natural action onand in the case of the Frohman–Nicas theory from the Hard–Lefschetz decomposition of theU(1)-moduli spaces given that they are naturally Kähler. The irreducible components of this TQFT, corresponding to simple representations of SL(2; ℤ) and Sp(2g; ℤ), thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg–Witten theories, Casson type theories for homology circlesà laDonaldson, higher rank gauge theories following Frohman and Nicas, and the ℤ=pℤ reductions of Reshetikhin.Turaev theories over the cyclotomic integers ℤ[ζp]. We also conjecture that the Hennings TQFT for quantum-sl2is the product of the Reshetikhin–Turaev TQFT and such a homological TQFT.


1989 ◽  
Vol 39 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Frank P. Prokop

In this paper neighbourhood lattices are developed as a generalisation of topological spaces in order to examine to what extent the concepts of “openness”, “closedness”, and “continuity” defined in topological spaces depend on the lattice structure of P(X), the power set of X.A general pre-neighbourhood system, which satisfies the poset analogues of the neighbourhood system of points in a topological space, is defined on an ∧-semi-lattice, and is used to define open elements. Neighbourhood systems, which satisfy the poset analogues of the neighbourhood system of sets in a topological space, are introduced and it is shown that it is the conditionally complete atomistic structure of P(X) which determines the extension of pre-neighbourhoods of points to the neighbourhoods of sets.The duals of pre-neighbourhood systems are used to generate closed elements in an arbitrary lattice, independently of closure operators or complementation. These dual systems then form the backdrop for a brief discussion of the relationship between preneighbourhood systems, topological closure operators, algebraic closure operators, and Čech closure operators.Continuity is defined for functions between neighbourhood lattices, and it is proved that a function f: X → Y between topological spaces is continuous if and only if corresponding direct image function between the neighbourhood lattices P(X) and P(Y) is continuous in the neighbourhood sense. Further, it is shown that the algebraic character of continuity, that is, the non-convergence aspects, depends only on the properites of pre-neighbourhood systems. This observation leads to a discussion of the continuity properties of residuated mappings. Finally, the topological properties of normality and regularity are characterised in terms of the continuity properties of the closure operator on a topological space.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Diego Delmastro ◽  
Davide Gaiotto ◽  
Jaume Gomis

Abstract We show that certain global anomalies can be detected in an elementary fashion by analyzing the way the symmetry algebra is realized on the torus Hilbert space of the anomalous theory. Distinct anomalous behaviours imprinted in the Hilbert space are identified with the distinct cohomology “layers” that appear in the classification of anomalies in terms of cobordism groups. We illustrate the manifestation of the layers in the Hilbert for a variety of anomalous symmetries and spacetime dimensions, including time-reversal symmetry, and both in systems of fermions and in anomalous topological quantum field theories (TQFTs) in 2 + 1d. We argue that anomalies can imply an exact bose-fermi degeneracy in the Hilbert space, thus revealing a supersymmetric spectrum of states; we provide a sharp characterization of when this phenomenon occurs and give nontrivial examples in various dimensions, including in strongly coupled QFTs. Unraveling the anomalies of TQFTs leads us to develop the construction of the Hilbert spaces, the action of operators and the modular data in spin TQFTs, material that can be read on its own.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhang ◽  
Ayhan Duzgun ◽  
Yuyang Lao ◽  
Shayaan Subzwari ◽  
Nicholas S. Bingham ◽  
...  

AbstractOne-dimensional strings of local excitations are a fascinating feature of the physical behavior of strongly correlated topological quantum matter. Here we study strings of local excitations in a classical system of interacting nanomagnets, the Santa Fe Ice geometry of artificial spin ice. We measured the moment configuration of the nanomagnets, both after annealing near the ferromagnetic Curie point and in a thermally dynamic state. While the Santa Fe Ice lattice structure is complex, we demonstrate that its disordered magnetic state is naturally described within a framework of emergent strings. We show experimentally that the string length follows a simple Boltzmann distribution with an energy scale that is associated with the system’s magnetic interactions and is consistent with theoretical predictions. The results demonstrate that string descriptions and associated topological characteristics are not unique to quantum models but can also provide a simplifying description of complex classical systems with non-trivial frustration.


2009 ◽  
Vol 20 (06) ◽  
pp. 891-899
Author(s):  
YORICK HARDY ◽  
WILLI-HANS STEEB

We consider finite-dimensional Hilbert spaces [Formula: see text] with [Formula: see text] with n ≥ 2 and unitary operators. In particular, we consider the case n = 2m, where m ≥ 2 in order to study entanglement of states in these Hilbert spaces. Two normalized states ψ and ϕ in these Hilbert spaces [Formula: see text] are connected by a unitary transformation (n×n unitary matrices), i.e. ψ = Uϕ, where U is a unitary operator UU* = I. Given the normalized states ψ and ϕ, we provide an algorithm to find this unitary operator U for finite-dimensional Hilbert spaces. The construction is based on a modified Gram–Schmidt orthonormalization technique. A number of applications important in quantum computing are given. Symbolic C++ is used to give a computer algebra implementation in C++.


1978 ◽  
Vol 30 (01) ◽  
pp. 54-65 ◽  
Author(s):  
Alan Sultan

The theory of measure on topological spaces has in recent years found its most natural setting in the study of pavings and measures on such pavings (see e.g. [1-3; 5; 6; 10; 19; 22; 32; 33]. In this setting the relationship between measure and topology crystallizes since one concentrates primarily on the simpler internal lattice structure associated with sublattices of the topology rather than on the more complex topological structure.


2020 ◽  
Vol 18 (1) ◽  
pp. 1440-1450
Author(s):  
Cezhong Tong ◽  
Zhan Zhang ◽  
Biao Xu

Abstract In this paper, we prove that the topological spaces of nonzero weighted composition operators acting on some Hilbert spaces of analytic functions on the unit open ball are simply connected.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Sign in / Sign up

Export Citation Format

Share Document