Measure, Compactification and Representation

1978 ◽  
Vol 30 (01) ◽  
pp. 54-65 ◽  
Author(s):  
Alan Sultan

The theory of measure on topological spaces has in recent years found its most natural setting in the study of pavings and measures on such pavings (see e.g. [1-3; 5; 6; 10; 19; 22; 32; 33]. In this setting the relationship between measure and topology crystallizes since one concentrates primarily on the simpler internal lattice structure associated with sublattices of the topology rather than on the more complex topological structure.

1989 ◽  
Vol 39 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Frank P. Prokop

In this paper neighbourhood lattices are developed as a generalisation of topological spaces in order to examine to what extent the concepts of “openness”, “closedness”, and “continuity” defined in topological spaces depend on the lattice structure of P(X), the power set of X.A general pre-neighbourhood system, which satisfies the poset analogues of the neighbourhood system of points in a topological space, is defined on an ∧-semi-lattice, and is used to define open elements. Neighbourhood systems, which satisfy the poset analogues of the neighbourhood system of sets in a topological space, are introduced and it is shown that it is the conditionally complete atomistic structure of P(X) which determines the extension of pre-neighbourhoods of points to the neighbourhoods of sets.The duals of pre-neighbourhood systems are used to generate closed elements in an arbitrary lattice, independently of closure operators or complementation. These dual systems then form the backdrop for a brief discussion of the relationship between preneighbourhood systems, topological closure operators, algebraic closure operators, and Čech closure operators.Continuity is defined for functions between neighbourhood lattices, and it is proved that a function f: X → Y between topological spaces is continuous if and only if corresponding direct image function between the neighbourhood lattices P(X) and P(Y) is continuous in the neighbourhood sense. Further, it is shown that the algebraic character of continuity, that is, the non-convergence aspects, depends only on the properites of pre-neighbourhood systems. This observation leads to a discussion of the continuity properties of residuated mappings. Finally, the topological properties of normality and regularity are characterised in terms of the continuity properties of the closure operator on a topological space.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Martin Schäfer ◽  
Tino Ullrich ◽  
Béatrice Vedel

AbstractIn this paper we introduce new function spaces which we call anisotropic hyperbolic Besov and Triebel-Lizorkin spaces. Their definition is based on a hyperbolic Littlewood-Paley analysis involving an anisotropy vector only occurring in the smoothness weights. Such spaces provide a general and natural setting in order to understand what kind of anisotropic smoothness can be described using hyperbolic wavelets (in the literature also sometimes called tensor-product wavelets), a wavelet class which hitherto has been mainly used to characterize spaces of dominating mixed smoothness. A centerpiece of our present work are characterizations of these new spaces based on the hyperbolic wavelet transform. Hereby we treat both, the standard approach using wavelet systems equipped with sufficient smoothness, decay, and vanishing moments, but also the very simple and basic hyperbolic Haar system. The second major question we pursue is the relationship between the novel hyperbolic spaces and the classical anisotropic Besov–Lizorkin-Triebel scales. As our results show, in general, both approaches to resolve an anisotropy do not coincide. However, in the Sobolev range this is the case, providing a link to apply the newly obtained hyperbolic wavelet characterizations to the classical setting. In particular, this allows for detecting classical anisotropies via the coefficients of a universal hyperbolic wavelet basis, without the need of adaption of the basis or a-priori knowledge on the anisotropy.


Author(s):  
M. Abu Saleem

The main aim of this article is to present neutrosophic folding and neutrosophic retractions on a single-valued neutrosophic graph Ğ from the viewpoint of geometry and topology. For this reason, we use a sequence of neutrosophic transformations on Ğ to obtain a new single-valued neutrosophic graph G ˇ 1 which contains different parameters under new conditions. We deduce the isometric neutrosophic folding on neutrosophic spheres and neutrosophic torii. Also, we determine the relationship between the limit neutrosophic folding and the limit of neutrosophic retraction on Ğ. Theorems regulating these relations are attained.


2017 ◽  
Vol 122 (4) ◽  
pp. 045102 ◽  
Author(s):  
Yang-Yang Lv ◽  
Xiao Li ◽  
Bin Pang ◽  
Lin Cao ◽  
Dajun Lin ◽  
...  

Author(s):  
S. Malathi, Et. al.

In this paper we introduce a new type of neighbourhoods, namely, t-neighbourhoods in trigonometric topological spaces and study their basic properties. Also, we discuss the relationship between neighbourhoods and t-neighbourhoods. Further, we give the necessary condition for t-neighbourhoods in trigonometric topological spaces.  .


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Yang ◽  
Sheng-Gang Li ◽  
William Zhu ◽  
Xiao-Fei Yang ◽  
Ahmed Mostafa Khalil

An L , M -fuzzy topological convergence structure on a set X is a mapping which defines a degree in M for any L -filter (of crisp degree) on X to be convergent to a molecule in L X . By means of L , M -fuzzy topological neighborhood operators, we show that the category of L , M -fuzzy topological convergence spaces is isomorphic to the category of L , M -fuzzy topological spaces. Moreover, two characterizations of L -topological spaces are presented and the relationship with other convergence spaces is concretely constructed.


1999 ◽  
Vol 13 (16) ◽  
pp. 547-553
Author(s):  
SHAOGUANG ZHANG ◽  
ZHONGCAN OUYANG ◽  
JIXING LIU

So far, two methods are often used in solving the equilibrium shapes of vesicles. One method is by starting with the general shape equation and restricting it to the shapes with particular symmetry. The other method is by assuming the symmetry and topology of the vesicle first and treating it with the calculus of variation to get a set of ordinary differential equations. The relationship between these two methods in the case of cylindrical vesicles, and a comparison of the results are given.


1979 ◽  
Vol 20 (3) ◽  
pp. 367-375 ◽  
Author(s):  
G.J. Logan

A closure algebra is a set X with a closure operator C defined on it. It is possible to construct a topology τ on MX, the family of maximal, proper, closed subsets of X, and then to examine the relationship between the algebraic structure of (X, C) and the topological structure of the dual space (MX τ) This paper describes the algebraic conditions which are necessary and sufficient for the dual space to be separable metric and metric respectively.


2020 ◽  
Vol 1 (1-2) ◽  
pp. 68-85
Author(s):  
Stuart Gietel-Basten

Abstract Very few historical studies have been able to demonstrate the times of day when humans give birth in a ‘natural’ setting—i.e. outside of any hospital context or potential intervention. Two villages in the southwestern Russian Empire present rare examples of nineteenth-century baptism registers where time of birth were recorded. The evidence supports the thesis that ‘natural’ human births disproportionately occur between midnight and early morning. Evidence from the registers also show a seasonal effect, likely driven by the relationship between luminosity and melatonin production. The study, then, contributes to the ongoing debate regarding the medicalisation of childbearing, the deterioration of female autonomy in the sphere of childbearing, as well as other negative health outcomes. Historical evidence can demonstrate how far the circumstances of contemporary society differ from the ‘natural’ mode in something as fundamental as the time of the day when we give birth.


2020 ◽  
Vol 16 (02) ◽  
pp. 291-304
Author(s):  
Sutapa Mahato ◽  
S. P. Tiwari

The objective of this paper is to establish the relationship between fuzzy approximation operators and fuzzy transformation systems. We show that for each upper fuzzy transformation system there exists a fuzzy reflexive approximation space and vice-versa. We further establish such relationship between lower fuzzy transformation systems and fuzzy reflexive approximation spaces under the condition that the underline lattice structure satisfies double negation law.


Sign in / Sign up

Export Citation Format

Share Document