UNITARY OPERATORS, ENTANGLEMENT, AND GRAM–SCHMIDT ORTHOGONALIZATION

2009 ◽  
Vol 20 (06) ◽  
pp. 891-899
Author(s):  
YORICK HARDY ◽  
WILLI-HANS STEEB

We consider finite-dimensional Hilbert spaces [Formula: see text] with [Formula: see text] with n ≥ 2 and unitary operators. In particular, we consider the case n = 2m, where m ≥ 2 in order to study entanglement of states in these Hilbert spaces. Two normalized states ψ and ϕ in these Hilbert spaces [Formula: see text] are connected by a unitary transformation (n×n unitary matrices), i.e. ψ = Uϕ, where U is a unitary operator UU* = I. Given the normalized states ψ and ϕ, we provide an algorithm to find this unitary operator U for finite-dimensional Hilbert spaces. The construction is based on a modified Gram–Schmidt orthonormalization technique. A number of applications important in quantum computing are given. Symbolic C++ is used to give a computer algebra implementation in C++.

2002 ◽  
Vol 16 (30) ◽  
pp. 4593-4605 ◽  
Author(s):  
G. GIORGADZE

In this work, a gauge approach to quantum computing is considered. It is assumed that there exists a classical procedure for placing certain classical system in a state described by a holomorphic vector bundle with connection with logarithmic singularities. This bundle and its connection are constructed with the aid of unitary operators realizing the given algorithm using methods of the monodromic Riemann–Hilbert problem. Universality is understood in the sense that for any collection of unitary matrices there exists a connection with logarithmic singularities whose monodromy representation involves these matrices.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


2020 ◽  
Vol 18 (01) ◽  
pp. 1941026 ◽  
Author(s):  
Rinie N. M. Nasir ◽  
Jesni Shamsul Shaari ◽  
Stefano Mancini

Analogous to the notion of mutually unbiased bases for Hilbert spaces, we consider mutually unbiased unitary bases (MUUBs) for the space of operators, [Formula: see text], acting on such Hilbert spaces. The notion of MUUB reflects the equiprobable guesses of unitary operators in one basis of [Formula: see text] when estimating a unitary operator in another. Though, for prime dimension [Formula: see text], the maximal number of MUUBs is known to be [Formula: see text], there is no known recipe for constructing them, assuming they exist. However, one can always construct a minimum of three MUUBs, and the maximal number is approached for very large values of [Formula: see text]. MUUBs can also exist for some [Formula: see text]-dimensional subspace of [Formula: see text] with the maximal number being [Formula: see text].


Open Physics ◽  
2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Willi-Hans Steeb ◽  
Yorick Hardy

AbstractWe consider a hierarchy of Hamilton operators Ĥ N in finite dimensional Hilbert spaces $$ \mathbb{C}^{2^N } $$. We show that the eigenstates of Ĥ N are fully entangled for N even. We also calculate the unitary operator U N(t) = exp(—Ĥ N t/ħ) for the time evolution and show that unentangled states can be transformed into entangled states using this operator. We also investigate energy level crossing for this hierarchy of Hamilton operators.


2012 ◽  
Vol 09 (07) ◽  
pp. 1220013
Author(s):  
Y. HARDY ◽  
W.-H. STEEB

We study a sequence of quantum gates in finite-dimensional Hilbert spaces given by the normalized eigenvectors of the unitary operators. The corresponding sequence of the Hamilton operators is also given. From the Hamilton operators we construct another hierarchy of quantum gates via the Cayley transform.


1977 ◽  
Vol 20 (2) ◽  
pp. 153-160
Author(s):  
J.-M. Belley

It has long been the practice in the theory of Hilbert spaces to use the Fourier series expansion (i.e. the Levy inversion formula) for the resolution of the identity associated with a unitary operator to obtain results for this operator, and hence for any power bounded invertible operator on such spaces since they are necessarily isomorphic to unitary operators [5, p. 1945]. Though many important power bounded operators on Banach spaces are not spectral [6, p. 1045-1051] the approach of this paper permits us to deduce for such operators results similar to those known for spectral operators.


2008 ◽  
Vol 19 (07) ◽  
pp. 1069-1078 ◽  
Author(s):  
WILLI-HANS STEEB ◽  
YORICK HARDY

In linear quantum optics we consider phase shifters, beam splitters, displacement operations, squeezing operations etc. The evolution can be described by unitary operators using Bose creation and annihilation operators. This evolution can be reduced to matrix multiplication using unitary matrices. We derive these evolutions for the different unitary operators. Finally a computer algebra implementation is provided.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


Sign in / Sign up

Export Citation Format

Share Document