scholarly journals Riemannian Properties of Engel Structures

Author(s):  
Nicola Pia

Abstract This paper is about geometric and Riemannian properties of Engel structures. A choice of defining forms for an Engel structure $\mathcal{D}$ determines a distribution $\mathcal{R}$ transverse to $\mathcal{D}$ called the Reeb distribution. We study conditions that ensure integrability of $\mathcal{R}$. For example, if we have a metric $g$ that makes the splitting $TM=\mathcal{D}\oplus \mathcal{R}$ orthogonal and such that $\mathcal{D}$ is totally geodesic then there exists another Reeb distribution, which is integrable. We introduce the notion of K-Engel structures in analogy with K-contact structures, and we classify the topology of K-Engel manifolds. As natural consequences of these methods, we provide a construction that is the analogue of the Boothby–Wang construction in the contact setting, and we give a notion of contact filling for an Engel structure.

Author(s):  
Gianni Manno ◽  
Paweł Nurowski ◽  
Katja Sagerschnig

AbstractA contact twisted cubic structure$$({\mathcal M},\mathcal {C},{\varvec{\upgamma }})$$ ( M , C , γ ) is a 5-dimensional manifold $${\mathcal M}$$ M together with a contact distribution $$\mathcal {C}$$ C and a bundle of twisted cubics $${\varvec{\upgamma }}\subset \mathbb {P}(\mathcal {C})$$ γ ⊂ P ( C ) compatible with the conformal symplectic form on $$\mathcal {C}$$ C . The simplest contact twisted cubic structure is referred to as the contact Engel structure; its symmetry group is the exceptional group $$\mathrm {G}_2$$ G 2 . In the present paper we equip the contact Engel structure with a smooth section $$\sigma : {\mathcal M}\rightarrow {\varvec{\upgamma }}$$ σ : M → γ , which “marks” a point in each fibre $${\varvec{\upgamma }}_x$$ γ x . We study the local geometry of the resulting structures $$({\mathcal M},\mathcal {C},{\varvec{\upgamma }}, \sigma )$$ ( M , C , γ , σ ) , which we call marked contact Engel structures. Equivalently, our study can be viewed as a study of foliations of $${\mathcal M}$$ M by curves whose tangent directions are everywhere contained in $${\varvec{\upgamma }}$$ γ . We provide a complete set of local invariants of marked contact Engel structures, we classify all homogeneous models with symmetry groups of dimension $$\ge 6$$ ≥ 6 up to local equivalence, and we prove an analogue of the classical Kerr theorem from Relativity.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6211-6218 ◽  
Author(s):  
Young Suh ◽  
Krishanu Mandal ◽  
Uday De

The present paper deals with invariant submanifolds of CR-integrable almost Kenmotsu manifolds. Among others it is proved that every invariant submanifold of a CR-integrable (k,?)'-almost Kenmotsu manifold with k < -1 is totally geodesic. Finally, we construct an example of an invariant submanifold of a CR-integrable (k,?)'-almost Kenmotsu manifold which is totally geodesic.


Author(s):  
Peter Mann

This chapter examines the structure of the phase space of an integrable system as being constructed from invariant tori using the Arnold–Liouville integrability theorem, and periodic flow and ergodic flow are investigated using action-angle theory. Time-dependent mechanics is formulated by extending the symplectic structure to a contact structure in an extended phase space before it is shown that mechanics has a natural setting on a jet bundle. The chapter then describes phase space of integrable systems and how tori behave when time-dependent dynamics occurs. Adiabatic invariance is discussed, as well as slow and fast Hamiltonian systems, the Hannay angle and counter adiabatic terms. In addition, the chapter discusses foliation, resonant tori, non-resonant tori, contact structures, Pfaffian forms, jet manifolds and Stokes’s theorem.


2015 ◽  
Vol 152 (1) ◽  
pp. 152-186 ◽  
Author(s):  
Tye Lidman ◽  
Steven Sivek

We apply results from both contact topology and exceptional surgery theory to study when Legendrian surgery on a knot yields a reducible manifold. As an application, we show that a reducible surgery on a non-cabled positive knot of genus$g$must have slope$2g-1$, leading to a proof of the cabling conjecture for positive knots of genus 2. Our techniques also produce bounds on the maximum Thurston–Bennequin numbers of cables.


2007 ◽  
Vol 50 (3) ◽  
pp. 321-333 ◽  
Author(s):  
David E. Blair

AbstractRecently I. Castro and F.Urbano introduced the Lagrangian catenoid. Topologically, it is ℝ × Sn–1 and its induced metric is conformally flat, but not cylindrical. Their result is that if a Lagrangian minimal submanifold in ℂn is foliated by round (n – 1)-spheres, it is congruent to a Lagrangian catenoid. Here we study the question of conformally flat, minimal, Lagrangian submanifolds in ℂn. The general problem is formidable, but we first show that such a submanifold resembles a Lagrangian catenoid in that its Schouten tensor has an eigenvalue of multiplicity one. Then, restricting to the case of at most two eigenvalues, we show that the submanifold is either flat and totally geodesic or is homothetic to (a piece of) the Lagrangian catenoid.


1963 ◽  
Vol 15 (3) ◽  
pp. 227-252 ◽  
Author(s):  
Seizi Takizawa

Author(s):  
Kazuo Akutagawa

AbstractWe show a kind of Obata-type theorem on a compact Einstein n-manifold $$(W, \bar{g})$$ ( W , g ¯ ) with smooth boundary $$\partial W$$ ∂ W . Assume that the boundary $$\partial W$$ ∂ W is minimal in $$(W, \bar{g})$$ ( W , g ¯ ) . If $$(\partial W, \bar{g}|_{\partial W})$$ ( ∂ W , g ¯ | ∂ W ) is not conformally diffeomorphic to $$(S^{n-1}, g_S)$$ ( S n - 1 , g S ) , then for any Einstein metric $$\check{g} \in [\bar{g}]$$ g ˇ ∈ [ g ¯ ] with the minimal boundary condition, we have that, up to rescaling, $$\check{g} = \bar{g}$$ g ˇ = g ¯ . Here, $$g_S$$ g S and $$[\bar{g}]$$ [ g ¯ ] denote respectively the standard round metric on the $$(n-1)$$ ( n - 1 ) -sphere $$S^{n-1}$$ S n - 1 and the conformal class of $$\bar{g}$$ g ¯ . Moreover, if we assume that $$\partial W \subset (W, \bar{g})$$ ∂ W ⊂ ( W , g ¯ ) is totally geodesic, we also show a Gursky-Han type inequality for the relative Yamabe constant of $$(W, \partial W, [\bar{g}])$$ ( W , ∂ W , [ g ¯ ] ) .


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 59
Author(s):  
Erol Kılıç ◽  
Mehmet Gülbahar ◽  
Ecem Kavuk

Concurrent vector fields lying on lightlike hypersurfaces of a Lorentzian manifold are investigated. Obtained results dealing with concurrent vector fields are discussed for totally umbilical lightlike hypersurfaces and totally geodesic lightlike hypersurfaces. Furthermore, Ricci soliton lightlike hypersurfaces admitting concurrent vector fields are studied and some characterizations for this frame of hypersurfaces are obtained.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Henning Fouckhardt ◽  
Johannes Strassner ◽  
Carina Heisel ◽  
Dominic Palm ◽  
Christoph Doering

Tunable microoptics deals with devices of which the optical properties can be changed during operation without mechanically moving solid parts. Often a droplet is actuated instead, and thus tunable microoptics is closely related to microfluidics. One such device/module/cell type is an optical shutter, which is moved in or out of the path of the light. In our case the transmitting part comprises a moving transparent and electrically conductive water droplet, embedded in a nonconductive blackened oil, that is, an opaque emulsion with attenuation of 30 dB at 570 nm wavelength over the 250 μm long light path inside the fluid (15 dB averaged over the visible spectral range). The insertion loss of the cell is 1.5 dB in the “open shutter” state. The actuation is achieved via electrowetting-on-dielectrics (EWOD) with rectangular AC voltage pulses of 2·90 V peak-to-peak at 1 kHz. To flexibly allow for horizontal, vertical, and diagonal droplet movement in the upright x-y plane, the contact structures are prepared such that four possible stationary droplet positions exist. The cell is configured as two capacitors in series (along the z axis), such that EWOD forces act symmetrically in the front and back of the 60 nl droplet with a response time of <20 ms.


Sign in / Sign up

Export Citation Format

Share Document