scholarly journals A Characteristic Map for the Symmetric Space of Symplectic Forms Over a Finite Field

Author(s):  
Jimmy He

Abstract The characteristic map for the symmetric group is an isomorphism relating the representation theory of the symmetric group to symmetric functions. An analogous isomorphism is constructed for the symmetric space of symplectic forms over a finite field, with the spherical functions being sent to Macdonald polynomials with parameters $(q,q^2)$. An analogue of parabolic induction is interpreted as a certain multiplication of symmetric functions. Applications are given to Schur positivity of skew Macdonald polynomials with parameters $(q,q^2)$ as well as combinatorial formulas for spherical function values.

10.37236/2364 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Zhi Chen

This paper gives a plethysm formula on the characteristic map of the induced linear characters from the unipotent upper-triangular matrices $U_n(\mathbb F_q)$ to $GL_n(\mathbb F_q)$, the general linear group over finite field $\mathbb F_q$. The result turns out to be a multiple of a twisted version of the Hall-Littlewood symmetric functions $\tilde{P}_n[Y;q]$. A recurrence relation is also given which makes it easy to carry out the computation.


10.37236/5949 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Rebecca Patrias

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map for the K-theoretic analogues of the symmetric functions, quasisymmetric functions, and noncommutative symmetric functions.


1992 ◽  
Vol 07 (23) ◽  
pp. 5781-5796
Author(s):  
ARLEN ANDERSON

The radial form of the partition function of a two-matrix model is formally given in terms of a spherical function for matrices representing any Euclidean symmetric space. An explicit expression is obtained by constructing the spherical function by the method of intertwining. The reduction of two-matrix models based on Lie algebras is an elementary application. A model based on the rank one symmetric space isomorphic to RN is less trivial and is treated in detail. This model may be interpreted as an Ising model on a random branched polymer. It has the unusual feature that the maximum order of criticality is different in the planar and double-scaling limits.


2021 ◽  
Vol 4 (3) ◽  
pp. 551-574
Author(s):  
Rosa Orellana ◽  
Mike Zabrocki

10.37236/4761 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Christos A. Athanasiadis

The chromatic quasisymmetric function of a graph was introduced by Shareshian and Wachs as a refinement of Stanley's chromatic symmetric function. An explicit combinatorial formula, conjectured by Shareshian and Wachs, expressing the chromatic quasisymmetric function of the incomparability graph of a natural unit interval order in terms of power sum symmetric functions, is proven. The proof uses a formula of Roichman for the irreducible characters of the symmetric group.


10.37236/9011 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
James Haglund ◽  
Andrew Timothy Wilson

We express the integral form Macdonald polynomials as a weighted sum of Shareshian and Wachs' chromatic quasisymmetric functions of certain graphs. Then we use known expansions of these chromatic quasisymmetric functions into Schur and power sum symmetric functions to provide Schur and power sum formulas for the integral form Macdonald polynomials. Since the (integral form) Jack polynomials are a specialization of integral form Macdonald polynomials, we obtain analogous formulas for Jack polynomials as corollaries. 


10.37236/6960 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Brendan Pawlowski

To each finite subset of $\mathbb{Z}^2$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture.However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we exhibit the appropriate diagram variety as a component in a degeneration of one of Knutson's interval positroid varieties (up to Grassmann duality). A priori, the cohomology classes of these interval positroid varieties are represented by affine Stanley symmetric functions. We give a different formula for these classes as ordinary Stanley symmetric functions, one with the advantage of being Schur-positive and compatible with inclusions between Grassmannians.


Sign in / Sign up

Export Citation Format

Share Document