scholarly journals The Bernstein Projector Determined by a Weak Associate Class of Good Cosets

Author(s):  
Yeansu Kim ◽  
Loren Spice ◽  
Sandeep Varma

Abstract Let ${\text G}$ be a reductive group over a $p$-adic field $F$ of characteristic zero, with $p \gg 0$, and let $G={\text G}(F)$. In [ 15], J.-L. Kim studied an equivalence relation called weak associativity on the set of unrefined minimal $K$-types for ${\text G}$ in the sense of A. Moy and G. Prasad. Following [ 15], we attach to the set $\overline{\mathfrak{s}}$ of good $K$-types in a weak associate class of positive-depth unrefined minimal $K$-types a ${G}$-invariant open and closed subset $\mathfrak{g}_{\overline{\mathfrak{s}}}$ of the Lie algebra $\mathfrak{g} = {\operatorname{Lie}}({\text G})(F)$, and a subset $\tilde{{G}}_{\overline{\mathfrak{s}}}$ of the admissible dual $\tilde{{G}}$ of ${G}$ consisting of those representations containing an unrefined minimal $K$-type that belongs to $\overline{\mathfrak{s}}$. Then $\tilde{{G}}_{\overline{\mathfrak{s}}}$ is the union of finitely many Bernstein components of ${G}$, so that we can consider the Bernstein projector $E_{\overline{\mathfrak{s}}}$ that it determines. We show that $E_{\overline{\mathfrak{s}}}$ vanishes outside the Moy–Prasad ${G}$-domain ${G}_r \subset{G}$, and reformulate a result of Kim as saying that the restriction of $E_{\overline{\mathfrak{s}}}$ to ${G}_r\,$, pushed forward via the logarithm to the Moy–Prasad ${G}$-domain $\mathfrak{g}_r \subset \mathfrak{g}$, agrees on $\mathfrak{g}_r$ with the inverse Fourier transform of the characteristic function of $\mathfrak{g}_{\overline{\mathfrak{s}}}$. This is a variant of one of the descriptions given by R. Bezrukavnikov, D. Kazhdan, and Y. Varshavsky in [8] for the depth-$r$ Bernstein projector.

2017 ◽  
Vol 24 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Luigi Accardi ◽  
Andreas Boukas ◽  
Yun-Gang Lu

In a recent paper, using a splitting formula for the multi-dimensional Heisenberg group, we derived a formula for the vacuum characteristic function (Fourier transform) of quantum random variables defined as self-adjoint sums of Fock space operators satisfying the multidimensional Heisenberg Lie algebra commutation relations. In this paper we use that formula to compute the characteristic function of quantum random variables defined as suitably truncated sums of the Virasoro algebra generators. By relating the structure of the Virasoro fields to the quadratic quantization program and using techniques developed in that context we prove that the vacuum distributions of the truncated Virasoro fields are products of independent, but not identically distributed, shifted Gamma-random variables.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2008 ◽  
Vol 28 (5) ◽  
pp. 1509-1531 ◽  
Author(s):  
THIERRY GIORDANO ◽  
HIROKI MATUI ◽  
IAN F. PUTNAM ◽  
CHRISTIAN F. SKAU

AbstractWe prove a result about extension of a minimal AF-equivalence relation R on the Cantor set X, the extension being ‘small’ in the sense that we modify R on a thin closed subset Y of X. We show that the resulting extended equivalence relation S is orbit equivalent to the original R, and so, in particular, S is affable. Even in the simplest case—when Y is a finite set—this result is highly non-trivial. The result itself—called the absorption theorem—is a powerful and crucial tool for the study of the orbit structure of minimal ℤn-actions on the Cantor set, see Remark 4.8. The absorption theorem is a significant generalization of the main theorem proved in Giordano et al [Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys.24 (2004), 441–475] . However, we shall need a few key results from the above paper in order to prove the absorption theorem.


2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
David W. Pravica ◽  
Njinasoa Randriampiry ◽  
Michael J. Spurr

The family ofnth orderq-Legendre polynomials are introduced. They are shown to be obtainable from the Jacobi theta function and to satisfy recursion relations and multiplicatively advanced differential equations (MADEs) that are analogues of the recursion relations and ODEs satisfied by thenth degree Legendre polynomials. Thenth orderq-Legendre polynomials are shown to have vanishingkth moments for0≤k<n, as does thenth degree truncated Legendre polynomial. Convergence results are obtained, approximations are given, a reciprocal symmetry is shown, and nearly orthonormal frames are constructed. Conditions are given under which a MADE remains a MADE under inverse Fourier transform. This is used to construct new wavelets as solutions of MADEs.


Author(s):  
Sen Zhang ◽  
Dingxi Wang ◽  
Yi Li ◽  
Hangkong Wu ◽  
Xiuquan Huang

Abstract The time spectral method is a very popular reduced order frequency method for analyzing unsteady flow due to its advantage of being easily extended from an existing steady flow solver. Condition number of the inverse Fourier transform matrix used in the method can affect the solution convergence and stability of the time spectral equation system. This paper aims at evaluating the effect of the condition number of the inverse Fourier transform matrix on the solution stability and convergence of the time spectral method from two aspects. The first aspect is to assess the impact of condition number using a matrix stability analysis based upon the time spectral form of the scalar advection equation. The relationship between the maximum allowable Courant number and the condition number will be derived. Different time instant groups which lead to the same condition number are also considered. Three numerical discretization schemes are provided for the stability analysis. The second aspect is to assess the impact of condition number for real life applications. Two case studies will be provided: one is a flutter case, NASA rotor 67, and the other is a blade row interaction case, NASA stage 35. A series of numerical analyses will be performed for each case using different time instant groups corresponding to different condition numbers. The conclusion drawn from the two real life case studies will corroborate the relationship derived from the matrix stability analysis.


Author(s):  
Alireza Jamali

After proposing a natural metric for the space in which particles spin which implements the principle of maximum frequency, E=hf is generalised and its inverse Fourier transform is calculated.


2009 ◽  
Vol 86 (1) ◽  
pp. 1-15 ◽  
Author(s):  
JONATHAN BROWN ◽  
JONATHAN BRUNDAN

AbstractWe construct an explicit set of algebraically independent generators for the center of the universal enveloping algebra of the centralizer of a nilpotent matrix in the general linear Lie algebra over a field of characteristic zero. In particular, this gives a new proof of the freeness of the center, a result first proved by Panyushev, Premet and Yakimova.


Sign in / Sign up

Export Citation Format

Share Document