scholarly journals The Cohomology Rings of Regular Nilpotent Hessenberg Varieties in Lie Type A

2017 ◽  
Vol 2019 (17) ◽  
pp. 5316-5388 ◽  
Author(s):  
Hiraku Abe ◽  
Megumi Harada ◽  
Tatsuya Horiguchi ◽  
Mikiya Masuda

AbstractLet $n$ be a fixed positive integer and $h: \{1,2,\ldots,n\} \rightarrow \{1,2,\ldots,n\}$ a Hessenberg function. The main results of this paper are two-fold. First, we give a systematic method, depending in a simple manner on the Hessenberg function $h$, for producing an explicit presentation by generators and relations of the cohomology ring $H^\ast({\mathrm{Hess}}(\mathsf{N},h))$ with ${\mathbb Q}$ coefficients of the corresponding regular nilpotent Hessenberg variety ${\mathrm{Hess}}(\mathsf{N},h)$. Our result generalizes known results in special cases such as the Peterson variety and also allows us to answer a question posed by Mbirika and Tymoczko. Moreover, our list of generators in fact forms a regular sequence, allowing us to use techniques from commutative algebra in our arguments. Our second main result gives an isomorphism between the cohomology ring $H^*({\mathrm{Hess}}(\mathsf{N},h))$ of the regular nilpotent Hessenberg variety and the $\mathfrak{S}_n$-invariant subring $H^*({\mathrm{Hess}}(\mathsf{S},h))^{\mathfrak{S}_n}$ of the cohomology ring of the regular semisimple Hessenberg variety (with respect to the $\mathfrak{S}_n$-action on $H^*({\mathrm{Hess}}(\mathsf{S},h))$ defined by Tymoczko). Our second main result implies that $\mathrm{dim}_{{\mathbb Q}} H^k({\mathrm{Hess}}(\mathsf{N},h)) = \mathrm{dim}_{{\mathbb Q}} H^k({\mathrm{Hess}}(\mathsf{S},h))^{\mathfrak{S}_n}$ for all $k$ and hence partially proves the Shareshian–Wachs conjecture in combinatorics, which is in turn related to the well-known Stanley–Stembridge conjecture. A proof of the full Shareshian–Wachs conjecture was recently given by Brosnan and Chow, and independently by Guay–Paquet, but in our special case, our methods yield a stronger result (i.e., an isomorphism of rings) by more elementary considerations. This article provides detailed proofs of results we recorded previously in a research announcement [2].

ISRN Geometry ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-34 ◽  
Author(s):  
Darius Bayegan ◽  
Megumi Harada

We develop the theory of poset pinball, a combinatorial game introduced by Harada-Tymoczko to study the equivariant cohomology ring of a GKM-compatible subspace X of a GKM space; Harada and Tymoczko also prove that, in certain circumstances, a successful outcome of Betti poset pinball yields a module basis for the equivariant cohomology ring of X. First we define the dimension pair algorithm, which yields a successful outcome of Betti poset pinball for any type A regular nilpotent Hessenberg and any type A nilpotent Springer variety, considered as GKM-compatible subspaces of the flag variety. The algorithm is motivated by a correspondence between Hessenberg affine cells and certain Schubert polynomials which we learned from Insko. Second, in a special case of regular nilpotent Hessenberg varieties, we prove that our pinball outcome is poset-upper-triangular, and hence the corresponding classes form a HS1*(pt)-module basis for the S1-equivariant cohomology ring of the Hessenberg variety.


2018 ◽  
Vol 60 (3) ◽  
pp. 703-729 ◽  
Author(s):  
YUMI BOOTE ◽  
NIGEL RAY

AbstractThe problem of computing the integral cohomology ring of the symmetric square of a topological space has long been of interest, but limited progress has been made on the general case until recently. We offer a solution for the complex and quaternionic projective spaces$\mathbb{K}$Pn, by utilising their rich geometrical structure. Our description involves generators and relations, and our methods entail ideas from the literature of quantum chemistry, theoretical physics, and combinatorics. We begin with the case$\mathbb{K}$P∞, and then identify the truncation required for passage to finiten. The calculations rely upon a ladder of long exact cohomology sequences, which compares cofibrations associated to the diagonals of the symmetric square and the corresponding Borel construction. These incorporate the one-point compactifications of classic configuration spaces of unordered pairs of points in$\mathbb{K}$Pn, which are identified as Thom spaces by combining Löwdin's symmetric orthogonalisation (and its quaternionic analogue) with a dash ofPingeometry. The relations in the ensuing cohomology rings are conveniently expressed using generalised Fibonacci polynomials. Our conclusions are compatible with those of Gugnin mod torsion and Nakaoka mod 2, and with homological results of Milgram.


2009 ◽  
Vol 52 (2) ◽  
pp. 200-212 ◽  
Author(s):  
Letterio Gatto ◽  
Taíse Santiago

AbstractThe (classical, small quantum, equivariant) cohomology ring of the grassmannian G(k, n) is generated by certain derivations operating on an exterior algebra of a free module of rank n (Schubert calculus on a Grassmann algebra). Our main result gives, in a unified way, a presentation of all such cohomology rings in terms of generators and relations. Using results of Laksov and Thorup, it also provides a presentation of the universal factorization algebra of a monic polynomial of degree n into the product of two monic polynomials, one of degree k.


2020 ◽  
Vol 2020 (764) ◽  
pp. 241-286 ◽  
Author(s):  
Takuro Abe ◽  
Tatsuya Horiguchi ◽  
Mikiya Masuda ◽  
Satoshi Murai ◽  
Takashi Sato

AbstractGiven a semisimple complex linear algebraic group {{G}} and a lower ideal I in positive roots of G, three objects arise: the ideal arrangement {\mathcal{A}_{I}}, the regular nilpotent Hessenberg variety {\operatorname{Hess}(N,I)}, and the regular semisimple Hessenberg variety {\operatorname{Hess}(S,I)}. We show that a certain graded ring derived from the logarithmic derivation module of {\mathcal{A}_{I}} is isomorphic to {H^{*}(\operatorname{Hess}(N,I))} and {H^{*}(\operatorname{Hess}(S,I))^{W}}, the invariants in {H^{*}(\operatorname{Hess}(S,I))} under an action of the Weyl group W of G. This isomorphism is shown for general Lie type, and generalizes Borel’s celebrated theorem showing that the coinvariant algebra of W is isomorphic to the cohomology ring of the flag variety {G/B}.This surprising connection between Hessenberg varieties and hyperplane arrangements enables us to produce a number of interesting consequences. For instance, the surjectivity of the restriction map {H^{*}(G/B)\to H^{*}(\operatorname{Hess}(N,I))} announced by Dale Peterson and an affirmative answer to a conjecture of Sommers and Tymoczko are immediate consequences. We also give an explicit ring presentation of {H^{*}(\operatorname{Hess}(N,I))} in types B, C, and G. Such a presentation was already known in type A and when {\operatorname{Hess}(N,I)} is the Peterson variety. Moreover, we find the volume polynomial of {\operatorname{Hess}(N,I)} and see that the hard Lefschetz property and the Hodge–Riemann relations hold for {\operatorname{Hess}(N,I)}, despite the fact that it is a singular variety in general.


2001 ◽  
Vol 131 (3) ◽  
pp. 459-472 ◽  
Author(s):  
ALEXANDER ZIMMERMANN

In an earlier paper we studied the impact of equivalences between derived categories of group rings on their cohomology rings. Especially the group of auto-equivalences TrPic(RG) of the derived category of a group ring RG as introduced by Raphaël Rouquier and the author defines an action on the cohomology ring of this group. We study this action with respect to the restriction map, transfer, conjugation and the local structure of the group G.


1963 ◽  
Vol 14 (2) ◽  
pp. 105-124 ◽  
Author(s):  
Derek F. Lawden

SummaryThe development during the last two decades of analytical techniques for the solution of problems relating to the optimisation of rocket trajectories is outlined and the present position in this field of research is summarised. It is shown that the determination of optimal trajectories in a general gravitational field can be expressed as a Mayer problem from the calculus of variations. The known solution to such a problem is stated and applied, first to the special case of the launching of an artificial satellite into a circular orbit with minimum expenditure of propellant and, secondly, to the general astronautical problem of the economical transfer of a rocket between two terminals in a gravitational field. The special cases when the field is uniform and when it obeys an inverse square law of attraction to a point are then considered, and the paper concludes with some remarks concerning areas in which further investigations are necessary.


2016 ◽  
Vol 797 ◽  
pp. 322-344 ◽  
Author(s):  
Yuriy A. Semenov ◽  
Guo Xiong Wu

A general similarity solution for water-entry problems of a wedge with its inner angle fixed and its sides in expansion is obtained with flow detachment, in which the speed of expansion is a free parameter. The known solutions for a wedge of a fixed length at the initial stage of water entry without flow detachment and at the final stage corresponding to Helmholtz flow are obtained as two special cases, at some finite and zero expansion speeds, respectively. An expanding horizontal plate impacting a flat free surface is considered as the special case of the general solution for a wedge inner angle equal to ${\rm\pi}$. An initial impulse solution for a plate of a fixed length is obtained as the special case of the present formulation. The general solution is obtained in the form of integral equations using the integral hodograph method. The results are presented in terms of free-surface shapes, streamlines and pressure distributions.


10.37236/1030 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Sarah Iveson

In this paper we study inversions within restricted fillings of Young tableaux. These restricted fillings are of interest because they describe geometric properties of certain subvarieties, called Hessenberg varieties, of flag varieties. We give answers and partial answers to some conjectures posed by Tymoczko. In particular, we find the number of components of these varieties, give an upper bound on the dimensions of the varieties, and give an exact expression for the dimension in some special cases. The proofs given are all combinatorial.


10.37236/6516 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Megumi Asada ◽  
Ryan Chen ◽  
Florian Frick ◽  
Frederick Huang ◽  
Maxwell Polevy ◽  
...  

Reay's relaxed Tverberg conjecture and Conway's thrackle conjecture are open problems about the geometry of pairwise intersections. Reay asked for the minimum number of points in Euclidean $d$-space that guarantees any such point set admits a partition into $r$ parts, any $k$ of whose convex hulls intersect. Here we give new and improved lower bounds for this number, which Reay conjectured to be independent of $k$. We prove a colored version of Reay's conjecture for $k$ sufficiently large, but nevertheless $k$ independent of dimension $d$. Pairwise intersecting convex hulls have severely restricted combinatorics. This is a higher-dimensional analogue of Conway's thrackle conjecture or its linear special case. We thus study convex-geometric and higher-dimensional analogues of the thrackle conjecture alongside Reay's problem and conjecture (and prove in two special cases) that the number of convex sets in the plane is bounded by the total number of vertices they involve whenever there exists a transversal set for their pairwise intersections. We thus isolate a geometric property that leads to bounds as in the thrackle conjecture. We also establish tight bounds for the number of facets of higher-dimensional analogues of linear thrackles and conjecture their continuous generalizations.


Sign in / Sign up

Export Citation Format

Share Document