scholarly journals Quadratic Twists of Abelian Varieties With Real Multiplication

Author(s):  
Ari Shnidman

AbstractLet $F$ be a totally real number field and $A/F$ an abelian variety with real multiplication (RM) by the ring of integers $\mathcal {O}$ of a totally real field. Assuming $A$ admits an $\mathcal {O}$-linear 3-isogeny over $F$, we prove that a positive proportion of the quadratic twists $A_d$ have rank 0. If moreover $A$ is principally polarized and $III(A_d)$ is finite, then a positive proportion of $A_d$ have $\mathcal {O}$-rank $1$. Our proofs make use of the geometry-of-numbers methods from our previous work with Bhargava, Klagsbrun, and Lemke Oliver and develop them further in the case of RM. We quantify these results for $A/\mathbb {Q}$ of prime level, using Mazur’s study of the Eisenstein ideal. For example, suppose $p \equiv 10$ or $19 \pmod {27}$, and let $A$ be the unique optimal quotient of $J_0(p)$ with a rational point $P$ of order 3. We prove that at least $25\%$ of twists $A_d$ have rank 0 and the average $\mathcal {O}$-rank of $A_d(F)$ is at most 7/6. Using the presence of two different 3-isogenies in this case, we also prove that roughly $1/8$ of twists of the quotient $A/\langle P\rangle$ have nontrivial 3-torsion in their Tate–Shafarevich groups.

Author(s):  
Joachim Petit

Abstract We investigate the number of curves having a rational point of almost minimal height in the family of quadratic twists of a given elliptic curve. This problem takes its origin in the work of Hooley, who asked this question in the setting of real quadratic fields. In particular, he showed an asymptotic estimate for the number of such fields with almost minimal fundamental unit. Our main result establishes the analogue asymptotic formula in the setting of quadratic twists of a fixed elliptic curve.


2016 ◽  
Vol 152 (10) ◽  
pp. 2134-2220 ◽  
Author(s):  
Yichao Tian ◽  
Liang Xiao

Let $F$ be a totally real field in which a prime $p$ is unramified. We define the Goren–Oort stratification of the characteristic-$p$ fiber of a quaternionic Shimura variety of maximal level at $p$. We show that each stratum is a $(\mathbb{P}^{1})^{r}$-bundle over other quaternionic Shimura varieties (for an appropriate integer $r$). As an application, we give a necessary condition for the ampleness of a modular line bundle on a quaternionic Shimura variety in characteristic $p$.


2019 ◽  
Vol 16 (05) ◽  
pp. 907-924
Author(s):  
Yasemin Kara ◽  
Ekin Ozman

Recent work of Freitas and Siksek showed that an asymptotic version of Fermat’s Last Theorem (FLT) holds for many totally real fields. This result was extended by Deconinck to the generalized Fermat equation of the form [Formula: see text], where [Formula: see text] are odd integers belonging to a totally real field. Later Şengün and Siksek showed that the asymptotic FLT holds over number fields assuming two standard modularity conjectures. In this work, combining their techniques, we show that the generalized Fermat’s Last Theorem (GFLT) holds over number fields asymptotically assuming the standard conjectures. We also give three results which show the existence of families of number fields on which asymptotic versions of FLT or GFLT hold. In particular, we prove that the asymptotic GFLT holds for a set of imaginary quadratic number fields of density 5/6.


2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL KRIZ ◽  
CHAO LI

Given an elliptic curve$E$over$\mathbb{Q}$, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (respectively 1). We show that this conjecture holds whenever$E$has a rational 3-isogeny. We also prove the analogous result for the sextic twists of$j$-invariant 0 curves. For a more general elliptic curve$E$, we show that the number of quadratic twists of$E$up to twisting discriminant$X$of analytic rank 0 (respectively 1) is$\gg X/\log ^{5/6}X$, improving the current best general bound toward Goldfeld’s conjecture due to Ono–Skinner (respectively Perelli–Pomykala). To prove these results, we establish a congruence formula between$p$-adic logarithms of Heegner points and apply it in the special cases$p=3$and$p=2$to construct the desired twists explicitly. As a by-product, we also prove the corresponding$p$-part of the Birch and Swinnerton–Dyer conjecture for these explicit twists.


2020 ◽  
Vol 156 (5) ◽  
pp. 959-1003
Author(s):  
Farrell Brumley ◽  
Simon Marshall

Let $G$ be an anisotropic semisimple group over a totally real number field $F$. Suppose that $G$ is compact at all but one infinite place $v_{0}$. In addition, suppose that $G_{v_{0}}$ is $\mathbb{R}$-almost simple, not split, and has a Cartan involution defined over $F$. If $Y$ is a congruence arithmetic manifold of non-positive curvature associated with $G$, we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue.


2017 ◽  
Vol 153 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Fred Diamond ◽  
Payman L Kassaei

We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.


2011 ◽  
Vol 203 ◽  
pp. 123-173
Author(s):  
Kâzim Büyükboduk

AbstractIn this paper, we construct (many) Kolyvagin systems out of Stickelberger elements utilizing ideas borrowed from our previous work on Kolyvagin systems of Rubin-Stark elements. The applications of our approach are twofold. First, assuming Brumer’s conjecture, we prove results on the odd parts of the ideal class groups of CM fields which are abelian over a totally real field, and we deduce Iwasawa’s main conjecture for totally real fields (for totally odd characters). Although this portion of our results has already been established by Wiles unconditionally (and refined by Kurihara using an Euler system argument, when Wiles’s work is assumed), the approach here fits well in the general framework the author has developed elsewhere to understand Euler/Kolyvagin system machinery when the core Selmer rank isr >1 (in the sense of Mazur and Rubin). As our second application, we establish a rather curious link between the Stickelberger elements and Rubin-Stark elements by using the main constructions of this article hand in hand with the “rigidity” of the collection of Kolyvagin systems proved by Mazur, Rubin, and the author.


2020 ◽  
Vol 63 (3) ◽  
pp. 861-912 ◽  
Author(s):  
Jakub Krásenský ◽  
Magdaléna Tinková ◽  
Kristýna Zemková

AbstractWe study totally positive definite quadratic forms over the ring of integers $\mathcal {O}_K$ of a totally real biquadratic field $K=\mathbb {Q}(\sqrt {m}, \sqrt {s})$. We restrict our attention to classic forms (i.e. those with all non-diagonal coefficients in $2\mathcal {O}_K$) and prove that no such forms in three variables are universal (i.e. represent all totally positive elements of $\mathcal {O}_K$). Moreover, we show the same result for totally real number fields containing at least one non-square totally positive unit and satisfying some other mild conditions. These results provide further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of $\mathcal {O}_K$; we prove several new results about their properties.


Sign in / Sign up

Export Citation Format

Share Document