The Generalized Baker–Schmidt Problem on Hypersurfaces

Author(s):  
Mumtaz Hussain ◽  
Johannes Schleischitz ◽  
David Simmons

Abstract The generalized Baker–Schmidt problem (1970) concerns the $f$-dimensional Hausdorff measure of the set of $\psi $-approximable points on a nondegenerate manifold. There are two variants of this problem concerning simultaneous and dual approximation. Beresnevich–Dickinson–Velani (in 2006, for the homogeneous setting) and Badziahin–Beresnevich–Velani (in 2013, for the inhomogeneous setting) proved the divergence part of this problem for dual approximation on arbitrary nondegenerate manifolds. The corresponding convergence counterpart represents a major challenging open question and the progress thus far has only been attained over planar curves. In this paper, we settle this problem for hypersurfaces in a more general setting, that is, for inhomogeneous approximations and with a non-monotonic multivariable approximating function.


Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.



Author(s):  
Felix Herold ◽  
Daniel Hug ◽  
Christoph Thäle

AbstractPoisson processes in the space of $$(d-1)$$ ( d - 1 ) -dimensional totally geodesic subspaces (hyperplanes) in a d-dimensional hyperbolic space of constant curvature $$-1$$ - 1 are studied. The k-dimensional Hausdorff measure of their k-skeleton is considered. Explicit formulas for first- and second-order quantities restricted to bounded observation windows are obtained. The central limit problem for the k-dimensional Hausdorff measure of the k-skeleton is approached in two different set-ups: (i) for a fixed window and growing intensities, and (ii) for fixed intensity and growing spherical windows. While in case (i) the central limit theorem is valid for all $$d\ge 2$$ d ≥ 2 , it is shown that in case (ii) the central limit theorem holds for $$d\in \{2,3\}$$ d ∈ { 2 , 3 } and fails if $$d\ge 4$$ d ≥ 4 and $$k=d-1$$ k = d - 1 or if $$d\ge 7$$ d ≥ 7 and for general k. Also rates of convergence are studied and multivariate central limit theorems are obtained. Moreover, the situation in which the intensity and the spherical window are growing simultaneously is discussed. In the background are the Malliavin–Stein method for normal approximation and the combinatorial moment structure of Poisson U-statistics as well as tools from hyperbolic integral geometry.



1985 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Murali Rao

Let D be a domain in Euclidean space of d dimensions and K a compact subset of D. The well known Harnack inequality assures the existence of a positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for all x and y in K and all positive harmonic functions u on D. In this we obtain a global integral version of this inequality under geometrical conditions on the domain. The result is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere condition—stated in Section 2. If u is harmonic in D with continuous boundary data f thenwhere ds is the d — 1 dimensional Hausdorff measure on the boundary ժD. A large class of domains satisfy this condition. Examples are C2-domains, convex domains, etc.



2000 ◽  
Vol 11 (08) ◽  
pp. 1057-1078
Author(s):  
JINGBO XIA

Kuroda's version of the Weyl-von Neumann theorem asserts that, given any norm ideal [Formula: see text] not contained in the trace class [Formula: see text], every self-adjoint operator A admits the decomposition A=D+K, where D is a self-adjoint diagonal operator and [Formula: see text]. We extend this theorem to the setting of multiplication operators on compact metric spaces (X, d). We show that if μ is a regular Borel measure on X which has a σ-finite one-dimensional Hausdorff measure, then the family {Mf:f∈ Lip (X)} of multiplication operators on T2(X, μ) can be simultaneously diagonalized modulo any [Formula: see text]. Because the condition [Formula: see text] in general cannot be dropped (Kato-Rosenblum theorem), this establishes a special relation between [Formula: see text] and the one-dimensional Hausdorff measure. The main result of the paper is that such a relation breaks down in Hausdorff dimensions p>1.



2018 ◽  
Vol 2018 (740) ◽  
pp. 63-76 ◽  
Author(s):  
Jing-Jing Huang

AbstractTen years ago, Beresnevich–Dickinson–Velani [Mem. Amer. Math. Soc. 179 (2006), no. 846] initiated a project that develops the general Hausdorff measure theory of dual approximation on non-degenerate manifolds. In particular, they established the divergence part of the theory based on their general ubiquity framework. However, the convergence counterpart of the project remains wide open and represents a major challenging question in the subject. Until recently, it was not even known for any single non-degenerate manifold. In this paper, we settle this problem for all curves in{\mathbb{R}^{2}}, which represents the first complete theory of its kind for a general class of manifolds.



2004 ◽  
Vol 56 (3) ◽  
pp. 529-552 ◽  
Author(s):  
A. Martínez-Finkelshtein ◽  
V. Maymeskul ◽  
E. A. Rakhmanov ◽  
E. B. Saff

AbstractWe consider the s-energy for point sets 𝒵 = {𝒵k,n: k = 0, …, n} on certain compact sets Γ in ℝd having finite one-dimensional Hausdorff measure,is the Riesz kernel. Asymptotics for the minimum s-energy and the distribution of minimizing sequences of points is studied. In particular, we prove that, for s ≥ 1, the minimizing nodes for a rectifiable Jordan curve Γ distribute asymptotically uniformly with respect to arclength as n → ∞.



Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050053
Author(s):  
XIAOFANG JIANG ◽  
QINGHUI LIU ◽  
GUIZHEN WANG ◽  
ZHIYING WEN

Let [Formula: see text] be the class of Moran sets with integer [Formula: see text] and real [Formula: see text] satisfying [Formula: see text]. It is well known that the Hausdorff dimension of any set in this class is [Formula: see text]. We show that for any [Formula: see text], [Formula: see text] where [Formula: see text] denotes [Formula: see text]-dimensional Hausdorff measure of [Formula: see text]. For any [Formula: see text] with [Formula: see text] there exists a self-similar set [Formula: see text] such that [Formula: see text].



1991 ◽  
Vol 11 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Dan Voiculescu

In the papers [9, 10, 3, 11] on perturbations of Hilbert space operators, we studied an invariant (τ) where is a normed ideal of compact operators and τ a family of operators. The size of an ideal for which (τ) vanishes or does not vanish is an upper, respectively lower, bound for a kind of dimension of τ. In the case of systems of commuting self-adjoint operators τ, the results of [9,3] relate (τ) with (an ideal slightly smaller than the Schatten von Neumann class ) to the way the spectral measure of τ compares to p-dimensional Hausdorff measure.



2019 ◽  
Vol 40 (12) ◽  
pp. 3217-3235 ◽  
Author(s):  
AYREENA BAKHTAWAR ◽  
PHILIP BOS ◽  
MUMTAZ HUSSAIN

Let $\unicode[STIX]{x1D6F9}:[1,\infty )\rightarrow \mathbb{R}_{+}$ be a non-decreasing function, $a_{n}(x)$ the $n$th partial quotient of $x$ and $q_{n}(x)$ the denominator of the $n$th convergent. The set of $\unicode[STIX]{x1D6F9}$-Dirichlet non-improvable numbers, $$\begin{eqnarray}G(\unicode[STIX]{x1D6F9}):=\{x\in [0,1):a_{n}(x)a_{n+1}(x)>\unicode[STIX]{x1D6F9}(q_{n}(x))\text{ for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$ is related with the classical set of $1/q^{2}\unicode[STIX]{x1D6F9}(q)$-approximable numbers ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ in the sense that ${\mathcal{K}}(3\unicode[STIX]{x1D6F9})\subset G(\unicode[STIX]{x1D6F9})$. Both of these sets enjoy the same $s$-dimensional Hausdorff measure criterion for $s\in (0,1)$. We prove that the set $G(\unicode[STIX]{x1D6F9})\setminus {\mathcal{K}}(3\unicode[STIX]{x1D6F9})$ is uncountable by proving that its Hausdorff dimension is the same as that for the sets ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ and $G(\unicode[STIX]{x1D6F9})$. This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika 64(2) (2018), 502–518].



2014 ◽  
Vol 23 (2) ◽  
pp. 248-268 ◽  
Author(s):  
DANIELE MUNDICI

A rational polyhedron$P\subseteq {\mathbb{R^n}}$ is a finite union of simplexes in ${\mathbb{R^n}}$ with rational vertices. P is said to be $\mathbb Z$-homeomorphic to the rational polyhedron $Q\subseteq {\mathbb{R^{\it m}}}$ if there is a piecewise linear homeomorphism η of P onto Q such that each linear piece of η and η−1 has integer coefficients. When n=m, $\mathbb Z$-homeomorphism amounts to continuous $\mathcal{G}_n$-equidissectability, where $\mathcal{G}_n=GL(n,\mathbb Z) \ltimes \mathbb Z^{n}$ is the affine group over the integers, i.e., the group of all affinities on $\mathbb{R^{n}}$ that leave the lattice $\mathbb Z^{n}$ invariant. $\mathcal{G}_n$ yields a geometry on the set of rational polyhedra. For each d=0,1,2,. . ., we define a rational measure λd on the set of rational polyhedra, and show that any two $\mathbb Z$-homeomorphic rational polyhedra $$P\subseteq {\mathbb{R^n}}$$ and $Q\subseteq {\mathbb{R^{\it m}}}$ satisfy $\lambda_d(P)=\lambda_d(Q)$. $\lambda_n(P)$ coincides with the n-dimensional Lebesgue measure of P. If 0 ≤ dim P=d < n then λd(P)>0. For rational d-simplexes T lying in the same d-dimensional affine subspace of ${\mathbb{R^{\it n}}, $\lambda_d(T)$$ is proportional to the d-dimensional Hausdorff measure of T. We characterize λd among all unimodular invariant valuations.



Sign in / Sign up

Export Citation Format

Share Document