In Vitro Adherence of Kanagawa-Positive Vibrio parahaemolyticus to Epithelial Cells

1977 ◽  
Vol 136 (4) ◽  
pp. 588-592 ◽  
Author(s):  
M. M. Carruthers
2002 ◽  
Vol 68 (6) ◽  
pp. 2901-2909 ◽  
Author(s):  
P. S. Marie Yeung ◽  
Micaela C. Hayes ◽  
Angelo DePaola ◽  
Charles A. Kaysner ◽  
Laura Kornstein ◽  
...  

ABSTRACT Historically, Vibrio parahaemolyticus infections have been characterized by sporadic cases caused by multiple, diverse serotypes. However, since 1996, V. parahaemolyticus serotype O3:K6 strains have been associated with several large-scale outbreaks of illness, suggesting the emergence of a “new” group of organisms with enhanced virulence. We have applied three different molecular subtyping techniques to identify an appropriate method for differentiating O3:K6 isolates from other serotypes. Pulsed-field gel electrophoresis (PFGE) following NotI digestion differentiated seven closely related subtypes among O3:K6 and related strains, which were distinct from PFGE patterns for non-O3:K6 isolates. Ribotyping and tdh sequencing were less discriminatory than PFGE, but further confirmed close genetic relationships among recent O3:K6 isolates. In vitro adherence and cytotoxicity studies with human epithelial cells showed that O3:K6 isolates exhibited statistically higher levels of adherence and cytotoxicity to host cells than non-O3:K6 isolates. Epithelial cell cytotoxicity patterns were determined with a lactate dehydrogenase release assay. At 3 h postinfection, high relative cytotoxicities (>50% maximum lactate dehydrogenase activity) were found among a greater proportion of recently isolated O3:K6 and closely related strains (75%) than among the non-O3:K6 isolates (23%). A statistically significant relationship between adherence and cytotoxicity suggests that the pathogenic potential of some isolates may be associated with increased adherence to epithelial cells. Our findings suggest that enhanced adherence and cytotoxicity may contribute to the apparent unique pathogenic potential of V. parahaemolyticus O3:K6 strains.


1981 ◽  
Vol 27 (12) ◽  
pp. 1252-1259 ◽  
Author(s):  
Yoshio Iijima ◽  
Hiroaki Yamada ◽  
Sumio Shinoda

Cultured epithelial cells were used to investigate the adherence of Vibrio parahaemolyticus. Correlation between adherence in vitro and pathogenicity (colonization) was shown by experiments on the distribution of vibrios in the small intestine of guinea pigs and on the lethal activity of vibrios to mice. In vitro adherence of 32 strains of V. parahaemolyticus including Kanagawa phenomenon (KP) positive and KP-negative strains was studied. The effect of purified KP toxin and antiserum against KP toxin was also studied. Adherence was not related to KP. Adherence of V. parahaemolyticus was thought to depend on viability, since the decrease in the number of colony-forming units paralleled the decrease in the number of bacteria adhering to epithelial cells, and bacteria fixed with ethanol and formalin did not show adherence.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

1979 ◽  
Vol 42 (05) ◽  
pp. 1630-1633 ◽  
Author(s):  
A G Castle ◽  
N Crawford

SummaryBlood platelets contain microtubule proteins (tubulin and HMWs) which can be polymerised “in vitro” to form structures which resemble the microtubules seen in the intact platelet. Platelet tubulin is composed of two non-identical subunits a and p tubulin which have molecular weights around 55,000 but can be resolved in alkaline SDS-polyacrylamide gel electrophoresis. These subunits associate as dimers with sedimentation coefficients of about 5.7 S although it is not known whether the dimer protein is a homo- or hetero-dimer. The dimer tubulin binds the anti-mitotic drug colchicine and the kinetics of this binding are similar to those reported for neurotubulins. Platelet microtubules also contain two HMW proteins which appear to be essential and integral components of the fully assembled microtubule. These proteins have molecular weights greater than 200,000 daltons. Fluorescent labelled antibodies to platelet and brain tubulins stain long filamentous microtubular structures in bovine lens epithelial cells and this pattern of staining is prevented by exposing the cells to conditions known to cause depolymerisation of cell microtubules.


Sign in / Sign up

Export Citation Format

Share Document