Cigarette smoke decreases the expression of secretory component in human bronchial epithelial cells, in vitro

2001 ◽  
Vol 48 (1) ◽  
pp. 81-94 ◽  
Author(s):  
R. J. Sapsford ◽  
J. H. Wang ◽  
P. R. Mills ◽  
R. J. Davies ◽  
S. S. Shah ◽  
...  
2020 ◽  
Author(s):  
Yan Zhang ◽  
Shanshan Wang ◽  
Hongli Li ◽  
Xia Xu

Abstract Chronic obstructive pulmonary disease (COPD) is a common respiratory disease associated with inflammation and oxidative stress. Sappanone A (SA) is a homoisoflavanone that has been proven to have anti-inflammatory and anti-oxidant effects. However, the role of SA in COPD remains unclear. Thus, the present study was aimed to evaluate the beneficial effect of SA on COPD in vitro. The human bronchial epithelial cells were exposed to 5% cigarette smoke extracts (CSE) to induce an in vitro model of COPD. Our results showed that SA treatment significantly attenuated the CSE-caused induction of ROS and reduction of SOD and GPx activities in 16HBE cells. In addition, SA inhibited the production of inflammatory cytokines IL-6, IFN-γ, and TNF-α in CSE-stimulated 16HBE cells. Moreover, the CSE-stimulated cell apoptosis of 16HBE cells were abrogated by SA. Furthermore, we observed that SA treatment greatly promoted the activation of Nrf2/HO-1 signaling pathway, as well as inhibited the activation of TLR4/NF-κB signaling pathway in CSE-stimulated 16HBE cells. Subsequent rescue assay revealed that the protective effects of SA on CSE-stimulated 16HBE cells were reversed by Nrf2 knockdown or TLR4 overexpression. Taken together, these findings demonstrated that SA inhibits oxidative stress, inflammation and apoptosis in CSE-induced human bronchial epithelial cells through regulating Nrf2/HO-1 and TLR4/NF-κB signaling pathways.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
M. Tomchaney ◽  
M. Contoli ◽  
J. Mayo ◽  
S. Baraldo ◽  
S. Li ◽  
...  

Abstract Background How cigarette smoke (CS) and chronic obstructive pulmonary disease (COPD) affect severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection and severity is controversial. We investigated the effects of COPD and CS on the expression of SARS-CoV-2 entry receptor ACE2 in vivo in COPD patients and controls and in CS-exposed mice, and the effects of CS on SARS-CoV-2 infection in human bronchial epithelial cells in vitro. Methods We quantified: (1) pulmonary ACE2 protein levels by immunostaining and ELISA, and both ACE2 and/or TMPRSS2 mRNA levels by RT-qPCR in two independent human cohorts; and (2) pulmonary ACE2 protein levels by immunostaining and ELISA in C57BL/6 WT mice exposed to air or CS for up to 6 months. The effects of CS exposure on SARS-CoV-2 infection were evaluated after in vitro infection of Calu-3 cells and differentiated human bronchial epithelial cells (HBECs), respectively. Results ACE2 protein and mRNA levels were decreased in peripheral airways from COPD patients versus controls but similar in central airways. Mice exposed to CS had decreased ACE2 protein levels in their bronchial and alveolar epithelia versus air-exposed mice. CS treatment decreased viral replication in Calu-3 cells, as determined by immunofluorescence staining for replicative double-stranded RNA (dsRNA) and western blot for viral N protein. Acute CS exposure decreased in vitro SARS-CoV-2 replication in HBECs, as determined by plaque assay and RT-qPCR. Conclusions ACE2 levels were decreased in both bronchial and alveolar epithelial cells from COPD patients versus controls, and from CS-exposed versus air-exposed mice. CS-pre-exposure potently inhibited SARS-CoV-2 replication in vitro. These findings urge to investigate further the controversial effects of CS and COPD on SARS-CoV-2 infection.


Life Sciences ◽  
2011 ◽  
Vol 89 (1-2) ◽  
pp. 36-43 ◽  
Author(s):  
Mirella Profita ◽  
Anna Bonanno ◽  
Angela Marina Montalbano ◽  
Maria Ferraro ◽  
Liboria Siena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document