Multiple Organ Involvement by Legionella pneumophila in a Fatal Case of Legionnaires' Disease

1989 ◽  
Vol 159 (4) ◽  
pp. 809-809 ◽  
Author(s):  
R. Monforte ◽  
F. Marco ◽  
R. Estruch ◽  
E. Campo
2012 ◽  
Vol 17 (41) ◽  
Author(s):  
J Moran-Gilad ◽  
T Lazarovitch ◽  
M Mentasti ◽  
T Harrison ◽  
M Weinberger ◽  
...  

We report a fatal case of community-acquired Legionnaires' disease in an infant aged under six months. Epidemiological and microbiological investigations suggested that a free-standing cold water humidifier using domestic tap water contaminated with Legionella pneumophila serogroup 1 served as a vehicle for infection. These findings were corroborated by sequence-based typing (SBT). Humidifier-associated Legionnaires' disease can be prevented by appropriate control measures. This case also illustrates the emerging role of SBT in the investigation of legionellosis.


1981 ◽  
Vol 36 (5) ◽  
pp. 262-263
Author(s):  
M. Delmee ◽  
M. Reynaert ◽  
L. Michel ◽  
G. Alexandre ◽  
G. Wauters

2009 ◽  
Vol 66 (12) ◽  
pp. 1010-1014
Author(s):  
Ilija Andrijevic ◽  
Jovan Matijasevic ◽  
Djordje Povazan ◽  
Marija Kojicic ◽  
Uros Batranovic

Background. Legionnaires' disease (LD) is a pneumonia caused by Legionella pneumophila (LP). The disease occurs more often in immunocompromised persons and can be manifested by severe pneumonia, multiple organ failure and has a high mortality. Case report. Immunocompetent patient, male, 53- year old, with severe form of LB had fever, cough, weakness and diarrhea as the initial symptoms of the disease. Laboratory results showed increased number of leukocytes, increased values of acute phase proteins, liver enzymes and hyponatremia. Computed tomography of the chest showed the marked inflammatory lesions on both sides. Pathohystological analysis of the samples retrieved by bronchoscopy pointed to a pneumonia, and diagnosis of LD was confirmed by positive urine test for LP antigen. Later, the disease was complicated by acute adult respiratory distress syndrome (ARDS). Treatment with antibiotics (erythromycin, rifampicin, azithromycin) combined with ARDS treatment led to a clinical recovery of the patient together with complete resolution of inflammatory lesions seen on chest radiography. Conclusion. In severe pneumonias it is necessary to consider LD in differential diagnosis, perform tests with aim of detecting LP and apply adequate antibiotic treatment in order to accomplish positive outcome of the therapy and prevent complications.


2021 ◽  
Vol 79 ◽  
pp. 386-389
Author(s):  
Aya Noguchi ◽  
Hirofumi Imoto ◽  
Hiroshi Yoshida ◽  
Shigeyuki Asano ◽  
Michiaki Unno ◽  
...  

2000 ◽  
Vol 44 (5) ◽  
pp. 1333-1336 ◽  
Author(s):  
Joan K. Brieland ◽  
David Loebenberg ◽  
Fred Menzel ◽  
Roberta S. Hare

ABSTRACT The efficacy of SCH27899, a new everninomicin antibiotic, against replicative Legionella pneumophila lung infections in an immunocompromised host was evaluated using a murine model of Legionnaires' disease. A/J mice were immunocompromised with cortisone acetate and inoculated intratracheally with L. pneumophilaserogroup 1 (105 CFU per mouse). At 24 h postinoculation, mice were administered either SCH27899 (6 to 60 mg/kg [MPK] intravenously) or a placebo once daily for 5 days, and mortality and intrapulmonary growth of L. pneumophila were assessed. In the absence of SCH27899, there was 100% mortality inL. pneumophila-infected mice, with exponential intrapulmonary growth of the bacteria. In contrast, administration of SCH27899 at a dose of ≥30 MPK resulted in ≥90% survival of infected mice, which was associated with inhibition of intrapulmonary growth ofL. pneumophila. In subsequent studies, the efficacy of SCH27899 was compared to ofloxacin (OFX) and azithromycin (AZI). Administration of SCH27899, OFX, or AZI at a dose of ≥30 MPK once daily for 5 days resulted in ≥85% survival of infected mice and inhibition of intrapulmonary growth of the bacteria. However, L. pneumophila CFU were recovered in lung homogenates following cessation of therapy with all three antibiotics. These studies demonstrate that SCH27899 effectively prevents fatal replicativeL. pneumophila lung infection in immunocompromised A/J mice by inhibition of intrapulmonary growth of the bacteria. However, in this murine model of pulmonary legionellosis, SCH27899, like OFX and AZI, was bacteriostatic.


1995 ◽  
Vol 41 (9) ◽  
pp. 846-848 ◽  
Author(s):  
E. Ledesma ◽  
J. Llorca ◽  
M. A. Dasí ◽  
M. L. Camaró ◽  
E. Carbonell ◽  
...  

Arbitrarily primed polymerase chain reaction (AP-PCR) was used to differentiate strains of Legionella pneumophila isolated from different water sources in a resort hotel in Benidorm, Alicante, Spain, where an outbreak of Legionnaires' disease occurred among a group of tourists between 65 and 80 years of age. All isolates were L. pneumophila serogroup 1, subtype Pontiac (Knoxville 1). Five different patterns (P1 to P5) were obtained by AP-PCR. The number of bands per pattern varied between 4 and 11. Patterns P1 and P2 represented 60 and 20% of L. pneumophila isolates, respectively. Since different subpopulations of L. pneumophila coexisted (up to three different AP-PCR patterns were identified in a single room), it was not possible to link an individual L. pneumophila strain to the occurrence of this outbreak.Key words: Legionella pneumophila, AP-PCR, subtyping, outbreak.


2013 ◽  
Vol 82 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Jens Jäger ◽  
Sebastian Marwitz ◽  
Jana Tiefenau ◽  
Janine Rasch ◽  
Olga Shevchuk ◽  
...  

ABSTRACTHistological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model forLegionella pneumophilainfection comprising living human lung tissue. We stimulated lung explants withL. pneumophilastrains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion ofL. pneumophilato the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA−strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context ofL. pneumophilainfections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.


2001 ◽  
Vol 114 (24) ◽  
pp. 4637-4650 ◽  
Author(s):  
Lewis G. Tilney ◽  
Omar S. Harb ◽  
Patricia S. Connelly ◽  
Camenzind G. Robinson ◽  
Craig R. Roy

Within five minutes of macrophage infection by Legionella pneumophila, the bacterium responsible for Legionnaires’ disease, elements of the rough endoplasmic reticulum (RER) and mitochondria attach to the surface of the bacteria-enclosed phagosome. Connecting these abutting membranes are tiny hairs, which are frequently periodic like the rungs of a ladder. These connections are stable and of high affinity - phagosomes from infected macrophages remain connected to the ER and mitochondria (as they were in situ) even after infected macrophages are homogenized. Thin sections through the plasma and phagosomal membranes show that the phagosomal membrane is thicker (72±2 Å) than the ER and mitochondrial membranes (60±2 Å), presumably owing to the lack of cholesterol, sphingolipids and glycolipids in the ER. Interestingly, within 15 minutes of infection, the phagosomal membrane changes thickness to resemble that of the attached ER vesicles. Only later (e.g. after six hours) does the ER-phagosome association become less frequent. Instead ribosomes stud the former phagosomal membrane and L. pneumophila reside directly in the rough ER. Examination of phagosomes of various L. pneumophila mutants suggests that this membrane conversion is a four-stage process used by L. pneumophila to establish itself in the RER and to survive intracellularly. But what is particularly interesting is that L. pneumophila is exploiting a poorly characterized naturally occuring cellular process.


Sign in / Sign up

Export Citation Format

Share Document