How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane

2001 ◽  
Vol 114 (24) ◽  
pp. 4637-4650 ◽  
Author(s):  
Lewis G. Tilney ◽  
Omar S. Harb ◽  
Patricia S. Connelly ◽  
Camenzind G. Robinson ◽  
Craig R. Roy

Within five minutes of macrophage infection by Legionella pneumophila, the bacterium responsible for Legionnaires’ disease, elements of the rough endoplasmic reticulum (RER) and mitochondria attach to the surface of the bacteria-enclosed phagosome. Connecting these abutting membranes are tiny hairs, which are frequently periodic like the rungs of a ladder. These connections are stable and of high affinity - phagosomes from infected macrophages remain connected to the ER and mitochondria (as they were in situ) even after infected macrophages are homogenized. Thin sections through the plasma and phagosomal membranes show that the phagosomal membrane is thicker (72±2 Å) than the ER and mitochondrial membranes (60±2 Å), presumably owing to the lack of cholesterol, sphingolipids and glycolipids in the ER. Interestingly, within 15 minutes of infection, the phagosomal membrane changes thickness to resemble that of the attached ER vesicles. Only later (e.g. after six hours) does the ER-phagosome association become less frequent. Instead ribosomes stud the former phagosomal membrane and L. pneumophila reside directly in the rough ER. Examination of phagosomes of various L. pneumophila mutants suggests that this membrane conversion is a four-stage process used by L. pneumophila to establish itself in the RER and to survive intracellularly. But what is particularly interesting is that L. pneumophila is exploiting a poorly characterized naturally occuring cellular process.

Author(s):  
Mariam Saad ◽  
Deanna Chinerman ◽  
Maryam Tabrizian ◽  
Sebastien P. Faucher

ABSTRACTLegionella pneumophila (Lp) is a water borne bacterium causing Legionnaires’ Disease (LD) in humans. Rapid detection of Lp in water system is essential to reduce the risk of LD outbreaks. The methods currently available require expert skills and are time intensive, thus delaying intervention. In situ detection of Lp by biosensor would allow rapid implementation of control strategies. To this end, a biorecognition element is required. Aptamers are considered promising biorecognition molecules for biosensing. Aptamers are short oligonucleotide sequence folding into a specific structure and are able to bind to specific molecules. Currently no aptamer and thus no aptamer-based technology exists for the detection of Lp. In this study, Systemic Evolution of Ligands through EXponential enrichment (SELEX) was used to identify aptamers binding specifically to Lp. Ten rounds of positive selection and two rounds of counter-selection against two Pseudomonas species were performed. Two aptamers binding strongly to Lp were identified with KD of 116 and 135 nM. Binding specificity of these two aptamers to Lp was confirmed by flow cytometry and fluorescence microscopy. Therefore, these two aptamers are promising biorecognition molecules for the detection of Lp in water systems.


Author(s):  
John H. L. Watson ◽  
C.N. Sun ◽  
H.J. White

This is a brief report of continuing investigations by SEM and TEM1, 2, 3 of the morphology and possible extrapulmonary sites in situ of the Legionnaires' disease bacterium of proposed genus and species Legionella pneumophila.4 Tissue from lung, heart, spleen, lymph nodes, kidney and liver have been thoroughly searched for the bacterium in situ, taken at autopsy from a patient who died of the disease confirmed as Legionnaires' by specific fluorescent antibody and silver impregnation staining.


Author(s):  
S. Q. Xiao ◽  
S. Baden ◽  
A. H. Heuer

The avian eggshell is one of the most rapidly mineralizing biological systems known. In situ, 5g of calcium carbonate are crystallized in less than 20 hrs to fabricate the shell. Although there have been much work about the formation of eggshells, controversy about the nucleation and growth mechanisms of the calcite crystals, and their texture in the eggshell, still remain unclear. In this report the microstructure and microchemistry of avian eggshells have been analyzed using transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS).Fresh white and dry brown eggshells were broken and fixed in Karnosky's fixative (kaltitanden) for 2 hrs, then rinsed in distilled H2O. Small speckles of the eggshells were embedded in Spurr medium and thin sections were made ultramicrotome.The crystalline part of eggshells are composed of many small plate-like calcite grains, whose plate normals are approximately parallel to the shell surface. The sizes of the grains are about 0.3×0.3×1 μm3 (Fig.l). These grains are not as closely packed as man-made polycrystalline metals and ceramics, and small gaps between adjacent grains are visible indicating the absence of conventional grain boundaries.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicole A. Ellis ◽  
Byoungkwan Kim ◽  
Jessica Tung ◽  
Matthias P. Machner

AbstractCatalytically inactive dCas9 imposes transcriptional gene repression by sterically precluding RNA polymerase activity at a given gene to which it was directed by CRISPR (cr)RNAs. This gene silencing technology, known as CRISPR interference (CRISPRi), has been employed in various bacterial species to interrogate genes, mostly individually or in pairs. Here, we developed a multiplex CRISPRi platform in the pathogen Legionella pneumophila capable of silencing up to ten genes simultaneously. Constraints on precursor-crRNA expression were overcome by combining a strong promoter with a boxA element upstream of a CRISPR array. Using crRNAs directed against virulence protein-encoding genes, we demonstrated that CRISPRi is fully functional not only during growth in axenic media, but also during macrophage infection, and that gene depletion by CRISPRi recapitulated the growth defect of deletion strains. By altering the position of crRNA-encoding spacers within the CRISPR array, our platform achieved the gradual depletion of targets that was mirrored by the severity in phenotypes. Multiplex CRISPRi thus holds great promise for probing large sets of genes in bulk in order to decipher virulence strategies of L. pneumophila and other bacterial pathogens.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin G. Sanchez ◽  
Micah J. Ferrell ◽  
Alexandra E. Chirakos ◽  
Kathleen R. Nicholson ◽  
Robert B. Abramovitch ◽  
...  

ABSTRACT Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772–E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum. Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression. IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.


2000 ◽  
Vol 44 (5) ◽  
pp. 1333-1336 ◽  
Author(s):  
Joan K. Brieland ◽  
David Loebenberg ◽  
Fred Menzel ◽  
Roberta S. Hare

ABSTRACT The efficacy of SCH27899, a new everninomicin antibiotic, against replicative Legionella pneumophila lung infections in an immunocompromised host was evaluated using a murine model of Legionnaires' disease. A/J mice were immunocompromised with cortisone acetate and inoculated intratracheally with L. pneumophilaserogroup 1 (105 CFU per mouse). At 24 h postinoculation, mice were administered either SCH27899 (6 to 60 mg/kg [MPK] intravenously) or a placebo once daily for 5 days, and mortality and intrapulmonary growth of L. pneumophila were assessed. In the absence of SCH27899, there was 100% mortality inL. pneumophila-infected mice, with exponential intrapulmonary growth of the bacteria. In contrast, administration of SCH27899 at a dose of ≥30 MPK resulted in ≥90% survival of infected mice, which was associated with inhibition of intrapulmonary growth ofL. pneumophila. In subsequent studies, the efficacy of SCH27899 was compared to ofloxacin (OFX) and azithromycin (AZI). Administration of SCH27899, OFX, or AZI at a dose of ≥30 MPK once daily for 5 days resulted in ≥85% survival of infected mice and inhibition of intrapulmonary growth of the bacteria. However, L. pneumophila CFU were recovered in lung homogenates following cessation of therapy with all three antibiotics. These studies demonstrate that SCH27899 effectively prevents fatal replicativeL. pneumophila lung infection in immunocompromised A/J mice by inhibition of intrapulmonary growth of the bacteria. However, in this murine model of pulmonary legionellosis, SCH27899, like OFX and AZI, was bacteriostatic.


1967 ◽  
Vol 32 (1) ◽  
pp. 193-208 ◽  
Author(s):  
Sidney Fleischer ◽  
Becca Fleischer ◽  
Walther Stoeckenius

The fine structure of mitochondria and submitochondrial vesicles depleted of their lipid by extraction with aqueous acetone was studied. Thin sections of mitochondrial membranes depleted of more than 95% of their lipid retained the unit membrane structure. Densitometer tracings of the electron micrographs showed that the unit membrane of extracted mitochondria was, on the average, wider than that of unextracted controls and showed a greater variation in width. The outer membrane was lost in mitochondria from which 80–95% of the lipids was extracted. Inner membrane particles were present on submitochondrial vesicles depleted of up to 85% of their lipids. However, when more than 95% of the lipid was removed, few, if any, particles remained attached to the membranes but many particles were found unattached in the background. When lipid was restored to lipid-deficient preparations, the mitochondrial membranes were found to be devoid of inner membrane particles but were fully active with respect to succinate-cytochrome c reductase activity.


1995 ◽  
Vol 41 (9) ◽  
pp. 846-848 ◽  
Author(s):  
E. Ledesma ◽  
J. Llorca ◽  
M. A. Dasí ◽  
M. L. Camaró ◽  
E. Carbonell ◽  
...  

Arbitrarily primed polymerase chain reaction (AP-PCR) was used to differentiate strains of Legionella pneumophila isolated from different water sources in a resort hotel in Benidorm, Alicante, Spain, where an outbreak of Legionnaires' disease occurred among a group of tourists between 65 and 80 years of age. All isolates were L. pneumophila serogroup 1, subtype Pontiac (Knoxville 1). Five different patterns (P1 to P5) were obtained by AP-PCR. The number of bands per pattern varied between 4 and 11. Patterns P1 and P2 represented 60 and 20% of L. pneumophila isolates, respectively. Since different subpopulations of L. pneumophila coexisted (up to three different AP-PCR patterns were identified in a single room), it was not possible to link an individual L. pneumophila strain to the occurrence of this outbreak.Key words: Legionella pneumophila, AP-PCR, subtyping, outbreak.


2015 ◽  
Vol 112 (37) ◽  
pp. E5208-E5217 ◽  
Author(s):  
Dervla T. Isaac ◽  
Rita K. Laguna ◽  
Nicole Valtz ◽  
Ralph R. Isberg

Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used byLegionella pneumophila.The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of theLegionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. TheΔmavNmutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavNmutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron.


2013 ◽  
Vol 82 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Jens Jäger ◽  
Sebastian Marwitz ◽  
Jana Tiefenau ◽  
Janine Rasch ◽  
Olga Shevchuk ◽  
...  

ABSTRACTHistological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model forLegionella pneumophilainfection comprising living human lung tissue. We stimulated lung explants withL. pneumophilastrains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion ofL. pneumophilato the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA−strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context ofL. pneumophilainfections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.


Sign in / Sign up

Export Citation Format

Share Document