Human immune response to HIV-1-Nef. I. CD45RO− T lymphocytes of non-infected donors contain cytotoxic T lymphocyte precursors at high frequency

1994 ◽  
Vol 6 (11) ◽  
pp. 1739-1749 ◽  
Author(s):  
Maria Lucchiari ◽  
Gabi Niedermann ◽  
Carola Leipner ◽  
Andreas Meyerhans ◽  
Klaus Eichmann ◽  
...  



2006 ◽  
Vol 81 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Mark J. Cayabyab ◽  
Michael W. Panas ◽  
Sampa Santra ◽  
John Greenland ◽  
...  

ABSTRACT The most promising vaccine strategies for the induction of cytotoxic-T-lymphocyte responses have been heterologous prime/boost regimens employing a plasmid DNA prime and a live recombinant-vector boost. The priming immunogen in these regimens must elicit antigen-specific memory CD8+ T lymphocytes that will expand following the boosting immunization. Because plasmid DNA immunogens are expensive and their immunogenicity has proven disappointing in human clinical trials, we have been exploring novel priming immunogens that might be used in heterologous immunization regimens. Here we show that priming with a prototype recombinant Mycobacterium smegmatis strain expressing human immunodeficiency virus type 1 (HIV-1) gp120-elicited CD4+ T lymphocytes with a functional profile of helper cells as well as a CD8+ T-lymphocyte population. These CD8+ T lymphocytes rapidly differentiated to memory cells, defined on the basis of their cytokine profile and expression of CD62L and CD27. Moreover, these recombinant-mycobacterium-induced T lymphocytes rapidly expanded following boosting with a recombinant adenovirus expressing HIV-1 Env to gp120-specific CD8+ T lymphocytes. This work demonstrates a remarkable skewing of recombinant-mycobacterium-induced T lymphocytes to durable antigen-specific memory CD8+ T cells and suggests that such immunogens might be used as priming vectors in prime/boost vaccination regimens for the induction of cellular immune responses.



1992 ◽  
Vol 9 (1) ◽  
pp. 1-13 ◽  
Author(s):  
S. Müller ◽  
P. Nara ◽  
R. D'amelio ◽  
R. Biselli ◽  
D. Gold ◽  
...  


1999 ◽  
Vol 97 (6) ◽  
pp. 707-718 ◽  
Author(s):  
David A. PRICE ◽  
Chris A. O'CALLAGHAN ◽  
Joseph A. WHELAN ◽  
Philippa J. EASTERBROOK ◽  
Rodney E. PHILLIPS

Efforts to develop immune-based therapies for HIV infection have been impeded by incomplete definition of the immunological correlates of protection. Despite many precedents demonstrating that CD8+ cytotoxic T lymphocytes are key mediators of protective anti-viral immunity in non-human animal models, direct evidence that these effector cells control viral replication in HIV-1 infection has remained elusive. The first part of this paper describes a detailed immunological and genetic study founded on evolutionary considerations. Following infection with HIV-1, virus variants which escaped recognition by autologous cytotoxic T lymphocytes were shown to possess a selection advantage within the host environment. Cytotoxic T lymphocytes therefore exert anti-viral pressure in vivo. This observation provides compelling evidence that cytotoxic T lymphocytes comprise a significant element of anti-retroviral immunity. Subsequently, the quantification of peripheral cytotoxic T lymphocyte frequencies utilizing peptide–(human leucocyte antigen class I) tetrameric complexes is described. Five patients with qualitatively similar immunodominant cytotoxic T lymphocyte responses during symptomatic primary HIV-1 infection were studied longitudinally. Expansions of virus-specific CD8+ lymphocytes comprising up to 2% of the total CD8+ T cell population were observed in the acute phase of infection. Antigenic load was identified as an important determinant of circulating HIV-1-specific CD8+ lymphocyte levels; however, significant numbers of such cells were also found to persist following prolonged therapeutic suppression of plasma viraemia. In addition, an analysis of antigenic sequence variation with time in this case series suggests that the early administration of combination anti-retroviral therapy may limit HIV-1 mutational escape from host cytolytic specificities. The implications of these preliminary data are discussed. The data presented suggest that vaccination protocols should aim to elicit vigorous cytotoxic T lymphocyte responses to HIV-1. Attempts to stimulate polyvalent responses to mutationally intolerant epitopes are likely to be most effective. Optimal management of HIV-1 infection requires an understanding of dynamic host–virus interactions, and may involve strategies designed to enhance cytotoxic T lymphocyte activity following periods of anti-retroviral drug therapy.



1998 ◽  
Vol 72 (5) ◽  
pp. 3547-3553 ◽  
Author(s):  
Deniz Durali ◽  
Jacques Morvan ◽  
Franck Letourneur ◽  
Doris Schmitt ◽  
Nelly Guegan ◽  
...  

ABSTRACT The great variability of protein sequences from human immunodeficiency virus (HIV) type 1 (HIV-1) isolates represents a major obstacle to the development of an effective vaccine against this virus. The surface protein (Env), which is the predominant target of neutralizing antibodies, is particularly variable. Here we examine the impact of variability among different HIV-1 subtypes (clades) on cytotoxic T-lymphocyte (CTL) activities, the other major component of the antiviral immune response. CTLs are produced not only against Env but also against other structural proteins, as well as some regulatory proteins. The genetic subtypes of HIV-1 were determined for Env and Gag from several patients infected either in France or in Africa. The cross-reactivities of the CTLs were tested with target cells expressing selected proteins from HIV-1 isolates of clade A or B or from HIV type 2 isolates. All African patients were infected with viruses belonging to clade A for Env and for Gag, except for one patient who was infected with a clade A Env-clade G Gag recombinant virus. All patients infected in France were infected with clade B viruses. The CTL responses obtained from all the African and all the French individuals tested showed frequent cross-reactions with proteins of the heterologous clade. Epitopes conserved between the viruses of clades A and B appeared especially frequent in Gag p24, Gag p18, integrase, and the central region of Nef. Cross-reactivity also existed among Gag epitopes of clades A, B, and G, as shown by the results for the patient infected with the clade A Env-clade G Gag recombinant virus. These results show that CTLs raised against viral antigens from different clades are able to cross-react, emphasizing the possibility of obtaining cross-immunizations for this part of the immune response in vaccinated individuals.



2001 ◽  
Vol 75 (5) ◽  
pp. 2462-2467 ◽  
Author(s):  
Dan H. Barouch ◽  
Abie Craiu ◽  
Sampa Santra ◽  
Michael A. Egan ◽  
Jörn E. Schmitz ◽  
...  

ABSTRACT Increasing evidence suggests that the generation of cytotoxic T-lymphocyte (CTL) responses specific for a diversity of viral epitopes will be needed for an effective human immunodeficiency virus type 1 (HIV-1) vaccine. Here, we determine the frequencies of CTL responses specific for the simian immunodeficiency virus Gag p11C and HIV-1 Env p41A epitopes in simian-human immunodeficiency virus (SHIV)-infected and vaccinated rhesus monkeys. The p11C-specific CTL response was high frequency and dominant and the p41A-specific CTL response was low frequency and subdominant in both SHIV-infected monkeys and in monkeys vaccinated with recombinant modified vaccinia virus Ankara vectors expressing these viral antigens. Interestingly, we found that plasmid DNA vaccination led to high-frequency CTL responses specific for both of these epitopes. These data demonstrate that plasmid DNA may be useful in eliciting a broad CTL response against multiple epitopes.



2009 ◽  
Vol 46 (5) ◽  
pp. 917-926 ◽  
Author(s):  
Miroslaw K. Gorny ◽  
Xiao-Hong Wang ◽  
Constance Williams ◽  
Barbara Volsky ◽  
Kathy Revesz ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document