scholarly journals ClinicNet: machine learning for personalized clinical order set recommendations

JAMIA Open ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 216-224
Author(s):  
Jonathan X Wang ◽  
Delaney K Sullivan ◽  
Alex C Wells ◽  
Jonathan H Chen

Abstract Objective This study assesses whether neural networks trained on electronic health record (EHR) data can anticipate what individual clinical orders and existing institutional order set templates clinicians will use more accurately than existing decision support tools. Materials and Methods We process 57 624 patients worth of clinical event EHR data from 2008 to 2014. We train a feed-forward neural network (ClinicNet) and logistic regression applied to the traditional problem structure of predicting individual clinical items as well as our proposed workflow of predicting existing institutional order set template usage. Results ClinicNet predicts individual clinical orders (precision = 0.32, recall = 0.47) better than existing institutional order sets (precision = 0.15, recall = 0.46). The ClinicNet model predicts clinician usage of existing institutional order sets (avg. precision = 0.31) with higher average precision than a baseline of order set usage frequencies (avg. precision = 0.20) or a logistic regression model (avg. precision = 0.12). Discussion Machine learning methods can predict clinical decision-making patterns with greater accuracy and less manual effort than existing static order set templates. This can streamline existing clinical workflows, but may not fit if historical clinical ordering practices are incorrect. For this reason, manually authored content such as order set templates remain valuable for the purposeful design of care pathways. ClinicNet’s capability of predicting such personalized order set templates illustrates the potential of combining both top-down and bottom-up approaches to delivering clinical decision support content. Conclusion ClinicNet illustrates the capability for machine learning methods applied to the EHR to anticipate both individual clinical orders and existing order set templates, which has the potential to improve upon current standards of practice in clinical order entry.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imogen Schofield ◽  
David C. Brodbelt ◽  
Noel Kennedy ◽  
Stijn J. M. Niessen ◽  
David B. Church ◽  
...  

AbstractCushing’s syndrome is an endocrine disease in dogs that negatively impacts upon the quality-of-life of affected animals. Cushing’s syndrome can be a challenging diagnosis to confirm, therefore new methods to aid diagnosis are warranted. Four machine-learning algorithms were applied to predict a future diagnosis of Cushing's syndrome, using structured clinical data from the VetCompass programme in the UK. Dogs suspected of having Cushing's syndrome were included in the analysis and classified based on their final reported diagnosis within their clinical records. Demographic and clinical features available at the point of first suspicion by the attending veterinarian were included within the models. The machine-learning methods were able to classify the recorded Cushing’s syndrome diagnoses, with good predictive performance. The LASSO penalised regression model indicated the best overall performance when applied to the test set with an AUROC = 0.85 (95% CI 0.80–0.89), sensitivity = 0.71, specificity = 0.82, PPV = 0.75 and NPV = 0.78. The findings of our study indicate that machine-learning methods could predict the future diagnosis of a practicing veterinarian. New approaches using these methods could support clinical decision-making and contribute to improved diagnosis of Cushing’s syndrome in dogs.


Author(s):  
Umesh R. Rosyara ◽  
Kate Dreher ◽  
Bhoja R. Basnet ◽  
Susanne Dreisigacker

Abstract This chapter discusses the increased implications in the current breeding methodology of wheat, such as rapid evolution of new sequencing and genotyping technologies, automation of phenotyping, sequencing and genotyping methods and increased use of prediction and machine learning methods. Some of the strategies that will further transform wheat breeding in the next few years are also presented.


2018 ◽  
Vol 26 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Muhammad Faisal ◽  
Andy Scally ◽  
Robin Howes ◽  
Kevin Beatson ◽  
Donald Richardson ◽  
...  

We compare the performance of logistic regression with several alternative machine learning methods to estimate the risk of death for patients following an emergency admission to hospital based on the patients’ first blood test results and physiological measurements using an external validation approach. We trained and tested each model using data from one hospital ( n = 24,696) and compared the performance of these models in data from another hospital ( n = 13,477). We used two performance measures – the calibration slope and area under the receiver operating characteristic curve. The logistic model performed reasonably well – calibration slope: 0.90, area under the receiver operating characteristic curve: 0.847 compared to the other machine learning methods. Given the complexity of choosing tuning parameters of these methods, the performance of logistic regression with transformations for in-hospital mortality prediction was competitive with the best performing alternative machine learning methods with no evidence of overfitting.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Yeresime Suresh ◽  
Lov Kumar ◽  
Santanu Ku. Rath

Experimental validation of software metrics in fault prediction for object-oriented methods using statistical and machine learning methods is necessary. By the process of validation the quality of software product in a software organization is ensured. Object-oriented metrics play a crucial role in predicting faults. This paper examines the application of linear regression, logistic regression, and artificial neural network methods for software fault prediction using Chidamber and Kemerer (CK) metrics. Here, fault is considered as dependent variable and CK metric suite as independent variables. Statistical methods such as linear regression, logistic regression, and machine learning methods such as neural network (and its different forms) are being applied for detecting faults associated with the classes. The comparison approach was applied for a case study, that is, Apache integration framework (AIF) version 1.6. The analysis highlights the significance of weighted method per class (WMC) metric for fault classification, and also the analysis shows that the hybrid approach of radial basis function network obtained better fault prediction rate when compared with other three neural network models.


2018 ◽  
Vol 25 (11) ◽  
pp. 1547-1551 ◽  
Author(s):  
Yiye Zhang ◽  
Richard Trepp ◽  
Weiguang Wang ◽  
Jorge Luna ◽  
David K Vawdrey ◽  
...  

Abstract Development and maintenance of order sets is a knowledge-intensive task for off-the-shelf machine-learning algorithms alone. We hypothesize that integrating clinical knowledge with machine learning can facilitate effective development and maintenance of order sets while promoting best practices in ordering. To this end, we simulated the revision of an “AM Lab Order Set” under 6 revision approaches. Revisions included changes in the order set content or default settings through 1) population statistics, 2) individualized prediction using machine learning, and 3) clinical knowledge. Revision criteria were determined using electronic health record (EHR) data from 2014 to 2015. Each revision’s clinical appropriateness, workload from using the order set, and generalizability across time were evaluated using EHR data from 2016 and 2017. Our results suggest a potential order set revision approach that jointly leverages clinical knowledge and machine learning to improve usability while updating contents based on latest clinical knowledge and best practices.


2021 ◽  
Vol 93 (6) ◽  
pp. AB145-AB146
Author(s):  
John M. Azizian ◽  
Camellia Dalai ◽  
Harry Trieu ◽  
Anand Rajan ◽  
James H. Tabibian

2014 ◽  
Vol 2 (40) ◽  
pp. 1-48 ◽  
Author(s):  
Alex Bottle ◽  
Rene Gaudoin ◽  
Rosalind Goudie ◽  
Simon Jones ◽  
Paul Aylin

BackgroundNHS hospitals collect a wealth of administrative data covering accident and emergency (A&E) department attendances, inpatient and day case activity, and outpatient appointments. Such data are increasingly being used to compare units and services, but adjusting for risk is difficult.ObjectivesTo derive robust risk-adjustment models for various patient groups, including those admitted for heart failure (HF), acute myocardial infarction, colorectal and orthopaedic surgery, and outcomes adjusting for available patient factors such as comorbidity, using England’s Hospital Episode Statistics (HES) data. To assess if more sophisticated statistical methods based on machine learning such as artificial neural networks (ANNs) outperform traditional logistic regression (LR) for risk prediction. To update and assess for the NHS the Charlson index for comorbidity. To assess the usefulness of outpatient data for these models.Main outcome measuresMortality, readmission, return to theatre, outpatient non-attendance. For HF patients we considered various readmission measures such as diagnosis-specific and total within a year.MethodsWe systematically reviewed studies comparing two or more comorbidity indices. Logistic regression, ANNs, support vector machines and random forests were compared for mortality and readmission. Models were assessed using discrimination and calibration statistics. Competing risks proportional hazards regression and various count models were used for future admissions and bed-days.ResultsOur systematic review and empirical analysis suggested that for general purposes comorbidity is currently best described by the set of 30 Elixhauser comorbidities plus dementia. Model discrimination was often high for mortality and poor, or at best moderate, for other outcomes, for examplec = 0.62 for readmission andc = 0.73 for death following stroke. Calibration was often good for procedure groups but poorer for diagnosis groups, with overprediction of low risk a common cause. The machine learning methods we investigated offered little beyond LR for their greater complexity and implementation difficulties. For HF, some patient-level predictors differed by primary diagnosis of readmission but not by length of follow-up. Prior non-attendance at outpatient appointments was a useful, strong predictor of readmission. Hospital-level readmission rates for HF did not correlate with readmission rates for non-HF; hospital performance on national audit process measures largely correlated only with HF readmission rates.ConclusionsMany practical risk-prediction or casemix adjustment models can be generated from HES data using LR, though an extra step is often required for accurate calibration. Including outpatient data in readmission models is useful. The three machine learning methods we assessed added little with these data. Readmission rates for HF patients should be divided by diagnosis on readmission when used for quality improvement.Future workAs HES data continue to develop and improve in scope and accuracy, they can be used more, for instance A&E records. The return to theatre metric appears promising and could be extended to other index procedures and specialties. While our data did not warrant the testing of a larger number of machine learning methods, databases augmented with physiological and pathology information, for example, might benefit from methods such as boosted trees. Finally, one could apply the HF readmissions analysis to other chronic conditions.FundingThe National Institute for Health Research Health Services and Delivery Research programme.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262193
Author(s):  
Monica I. Lupei ◽  
Danni Li ◽  
Nicholas E. Ingraham ◽  
Karyn D. Baum ◽  
Bradley Benson ◽  
...  

Objective To prospectively evaluate a logistic regression-based machine learning (ML) prognostic algorithm implemented in real-time as a clinical decision support (CDS) system for symptomatic persons under investigation (PUI) for Coronavirus disease 2019 (COVID-19) in the emergency department (ED). Methods We developed in a 12-hospital system a model using training and validation followed by a real-time assessment. The LASSO guided feature selection included demographics, comorbidities, home medications, vital signs. We constructed a logistic regression-based ML algorithm to predict “severe” COVID-19, defined as patients requiring intensive care unit (ICU) admission, invasive mechanical ventilation, or died in or out-of-hospital. Training data included 1,469 adult patients who tested positive for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) within 14 days of acute care. We performed: 1) temporal validation in 414 SARS-CoV-2 positive patients, 2) validation in a PUI set of 13,271 patients with symptomatic SARS-CoV-2 test during an acute care visit, and 3) real-time validation in 2,174 ED patients with PUI test or positive SARS-CoV-2 result. Subgroup analysis was conducted across race and gender to ensure equity in performance. Results The algorithm performed well on pre-implementation validations for predicting COVID-19 severity: 1) the temporal validation had an area under the receiver operating characteristic (AUROC) of 0.87 (95%-CI: 0.83, 0.91); 2) validation in the PUI population had an AUROC of 0.82 (95%-CI: 0.81, 0.83). The ED CDS system performed well in real-time with an AUROC of 0.85 (95%-CI, 0.83, 0.87). Zero patients in the lowest quintile developed “severe” COVID-19. Patients in the highest quintile developed “severe” COVID-19 in 33.2% of cases. The models performed without significant differences between genders and among race/ethnicities (all p-values > 0.05). Conclusion A logistic regression model-based ML-enabled CDS can be developed, validated, and implemented with high performance across multiple hospitals while being equitable and maintaining performance in real-time validation.


Sign in / Sign up

Export Citation Format

Share Document