Liquid Chromatographic Determination of Glucosinolates in Rapeseed as Desulfoglucosinolates

1984 ◽  
Vol 67 (4) ◽  
pp. 829-833
Author(s):  
Joseph P Sang ◽  
Roger J W Truscott

Abstract A method was developed for the quantitative determination of rapeseed glucosinolates as the desulfo derivatives, using liquid chromatography. Glucosinolates were desulfated at 37°C with the enzyme aryl sulfatase in Tris buffer, pH 8.0. All glucosinolates present in rapeseed were separated in 30 min on a Waters C18 Z-module using an acetonitrile gradient at 4 mL/min. Recoveries of benzyl, 4-hydroxybenzyl, and allylglucosinolates added to plant extracts were quantitative.

1974 ◽  
Vol 57 (2) ◽  
pp. 341-342
Author(s):  
Caesar B Garavelli

Abstract A procedure is described for the quantitative determination of 0.020—6.0 mg choline in low and high potency reference multiple vitamin tablets and standard liver preparations. The trimethylamine quantitatively produced in a sealed tube by treatment with aqueous 5 0% alkali is simultaneously extracted with 0.200—0.500 ml of an isobutanol-ethanol (1+1) mixture and determined by gas-liquid chromatography. An average recovery of 100 ± 3 % was obtained.


1977 ◽  
Vol 60 (4) ◽  
pp. 935-939 ◽  
Author(s):  
Harold F Hanel

Abstract Eight laboratories collaboratively studied a procedure for the quantitative determination of methaqualone. HCl in pharmaceutical and clandestine preparations. Methaqualone is extracted from an aqueous bicarbonate solution into chloroform and quantitated by gas-liquid chromatography on a 3% OV-1 column. Tetraphenylethylene is used as an internal standard. Two commercial preparations and 4 sample mixtures prepared by the author were studied. Recoveries for the 4 prepared samples ranged from 100.0 to 102.6%, and the coefficients of variation ranged from 1.58 to 4.15% for the 6 samples studied. The method has been adopted as official first action.


1984 ◽  
Vol 67 (6) ◽  
pp. 1135-1137 ◽  
Author(s):  
Yoshiki Onji ◽  
Masakiyo Uno ◽  
Tanigawa Kaoru

Abstract A simple and rapid method was developed for quantitative determination of common tetracyclines, such as oxytetracycline (OTC), tetracycline (TC), and chlortetracycline (CTC), in meat and fish. Tetracyclines were extracted with aqueous HCI, and then centrifuged. The supernate was applied to an Amberlite XAD-2 column, which was washed with water and eluted with methanol. The eluate was concentrated to about 0.5 mL under vacuum at 35°C, and then measured by liquid chromatography and UV detection. Two analytical columns were used for confirmation. The average recoveries of OTC, TC, and CTC from meat and fish fortified at 1, 1, and 3 ppm were 82.6, 81.5, and 67.0% respectively.


1987 ◽  
Vol 70 (6) ◽  
pp. 1031-1032
Author(s):  
Yuuko S Endoh ◽  
Ryozo Yamaoka ◽  
Nobuo Sasaki

Abstract A liquid chromatographic (LC) method is described for the quantitative determination of sulfamoyldapsone (2-sulfamoyl-4,4'-diaminodiphenyl sulfone) in swine muscle, liver, kidney, and fat. Sulfamoyldapsone was extracted from tissues with acetonitrile saturated with n-hexane. The extract was washed with n-hexane saturated with acetonitrile, concentrated, and cleaned up by alumina column chromatography. Sulfamoyldapsone was separated on an ODS column by using acetonitrile-methanol-water (6 + 18 + 76) and was detected at 292 nm. Overall average recovery of sulfamoyldapsone added to tissues at levels of 0.1 and 0.5 /μg/g was 93.3% ± 6.0. Detection limit was 0.02 μg/g in these tissues.


1976 ◽  
Vol 59 (1) ◽  
pp. 162-164
Author(s):  
Samuel K Reeder

Abstract A method is presented for the quantitative analysis of o-phenylphenol residues in citrus oils, encapsulated flavors, and dried meal. The method utilizes high-speed liquid chromatography for the determination after specific sample preparations for each material. These preparations include hexane extraction of acidified basic extracts or steam distillation and extraction. The limit of the analysis is <1 ppm with an analysis time of <45 min.


1980 ◽  
Vol 63 (1) ◽  
pp. 49-55
Author(s):  
Iwao Okuno ◽  
Dennis L Meeker

Abstract An analytical method is described for the determination of Compound 1080 (sodium fluoroacetate) residues in 1–10 g tissue. Sample extracts of tissues are cleaned up with silica gel, and Compound 1080 (as fluoroacetic acid) is separated by a micro-distillation procedure. The fluoroacetic acid in the distillate is derivatized with pentafluorobenzyl bromide to form pentafluorobenzyl fluoroacetate which is measured by electron capture gas-liquid chromatography. Recoveries of sodium fluoroacetate from fortified tissue samples averaged about 25%. Despite the limited recoveries, results were quite reproducible, and levels as low at 2 ppm were determined in fortified 1 g samples, and 0.2 ppm in 10 g samples. The method is relatively simple and has been used routinely in our laboratory for the analysis of various types of samples such as grain, and tissues from birds, rodents, and larger animals.


1979 ◽  
Vol 62 (1) ◽  
pp. 171-175 ◽  
Author(s):  
Alfred F Haeberer ◽  
Orestes T Chortyk

Abstract A method is presented for the determination of the plant growth regulator maleic hydrazide (MH; l,2-dihydro-3,6-pyridazinedione) in tobacco and tobacco smoke. Residues are converted to the bis(trimethylsilyl) derivative before analysis by gas-liquid chromatography. The method has been applied to cigarettes and condensed smoke and has been used to determine the per cent transfer of MH into cigarette smoke. Free MH residues could be determined directly on the tobacco samples, whereas total MH values were obtainable only after acid hydrolysis. In spite of large MH residues in tobacco, only 0.2% of the MH was transferred into smoke.


1977 ◽  
Vol 60 (6) ◽  
pp. 1307-1309 ◽  
Author(s):  
Hendrik J Bakker

Abstract Total inorganic iodine in milk is determined by conversion to iodobutanone, which is quantitated by gas-liquid chromatography and electron capture detection. As little as 10 μg/L can be determined. The thyroid-active iodine content of milk can be determined rapidly with a relative standard deviation of 1.9%. Average recoveries for added iodide and iodine were 95.5 and 94.6%, respectively.


1986 ◽  
Vol 69 (5) ◽  
pp. 856-859 ◽  
Author(s):  
Sheldon D West ◽  
Edgar W Day

Abstract A residue method is described for determination of the aquatic herbicide fluridone (1-methy1-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)- pyridinone) and its metabolite (1-methy1-3-(4-hydroxyphenyl)-5-[3- (trifluoromethyl)phenyl]-4(1H)-pyridinone) in fish and crayfish tissues. Both compounds are extracted from tissues with methanol, and the extracts are subjected to acidic hydrolysis to release conjugated forms of fluridone and the metabolite. Sample extracts are purified by liquidliquid partitioning and Florisil Sep-Pak® column chromatography. Both compounds are separated and measured by reverse phase liquid chromatography with UV detection at 313 nm. In the absence of interfering peaks, the method has a detection limit of approximately 0.04 ppm of either compound. Overall, recoveries averaged 96% for fluridone and 78% for the metabolite for all tissue types combined.


1995 ◽  
Vol 78 (3) ◽  
pp. 841-845 ◽  
Author(s):  
Bertil Lindgren ◽  
Tomas Berglöf ◽  
Åsa Ramberg ◽  
Anna Stepdmska ◽  
Malin Åkerblom

Abstract A method is presented for rapid determination of bromide ion in commodities and blood by paired-ion liquid chromatography with electrochemical detection. The method involves extraction of samples with water and filtration. Blood is passed through a Sep-Pak C18 minicolumn. Recoveries are usually close to 100%, with satisfactory precision. The detection limit is 1 mg/kg. The method needs little labor and uses no noxious solvents or reagents.


Sign in / Sign up

Export Citation Format

Share Document