96 Assessing the Sustainability of Multiple Grass-fed and Grain-fed Beef Production Systems

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 48-49
Author(s):  
Sarah C Klopatek ◽  
Elias Marvinney ◽  
Xiang Yang ◽  
Alissa Kendall ◽  
James W Oltjen

Abstract Increased demand for grass-fed beef raises many producers’ and consumers’ concerns regarding product quality, economic viability, and environmental impacts that have gone unanswered. Therefore, using a holistic approach, we investigated the performance, carcass quality, financial outcomes, and environmental impacts of four typical grass-fed and conventional beef systems raised in a Mediterranean climate in the western United States. The treatments included: 1) steers stocked on pasture and feedyard finished for 128 days (CON); 2) steers grass-fed for 20 months (GF20); 3) steers grass-fed for 20 months with a 45-day grain finish (GR45); and 4) steers grass-fed for 25 months (GF25). The data were analyzed using a mixed model procedure in R. Data from these beef production systems, a weaning-to-harvest life cycle assessment (LCA) using the SPARKS-LCA model framework, to determine global warming potential (GWP), consumable water usage, energy, smog, and land use footprints. Final body weight varied significantly between treatments (P < 0.001) with CON finishing at 632 kg, followed by GF25 at 570 kg, GR45 at 551 kg, and GF20 478 kg. Dressing percentage differed significantly between all treatments (P < 0.001) with CON at 61.8%, followed by GR45 at 57.5%, GF25 at 53.4%, and GF20 at 50.3%. Breakeven costs with harvesting and marketing for the CON, GF20, GR45, and GF25 were $6.01, $8.98, $8.02, and $8.33 per kg hot carcass weight (HCW), respectively. The GWP for the CON, GF20, GR45, and GF25 were 4.79, 6.74, 6.65 and 8.31 CO2e/kg HCW, respectively. Water consumptive use for CON, GF20, GR45, and GF25 were 933, 465, 678 and 1245 L /kg HCW, respectively. Energy use for CON, GF20, GR45, and GF25 were 18.69, 7.65, 13.84 and 8.85 MJ /kg HCW, respectively. The results from this study indicate that differences in grass-fed beef management can have profound impacts on food security and sustainability.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 46-47
Author(s):  
Sarah C Klopatek ◽  
Toni Duarte ◽  
Crystal Yang ◽  
James W Oltjen

Abstract With demand for grass-fed beef continuing to increase, there is an immediate need to determine animal performance and product quality from varying grass-fed systems. Therefore, using a whole systems approach, we investigated the performance and carcass quality of multiple grass-fed beef systems in California. The treatments included: 1) steers stocked on pasture, then feedyard finished for 140 days (CON); 2) steers grass-fed for 20 months (20GF); 3) steers grass-fed for 20 months with a 45-day grain finish (GR45); and 4) steers grass-fed for 25 months (25GF). The data were analyzed using a mixed model procedure in R. Final body weight (FBW) varied significantly between treatments (P < 0.05) with the CON cattle finishing at 626 kg and GF20 finishing with the lowest FBW of 478 kg. There were no significant differences in FBW between GF45 and GF25 treatments (P > 0.05), with FBW equaling 551 kg and 570 kg, respectively. Dressing percentage (DP) differed significantly between all treatments (P < 0.05), with CON DP at 61.8%, followed by GR45 at 57.5%, GF25 at 53.4%, and GF20 at 50.3%. Marbling scores and quality grades were significantly higher for CON compared to all other treatments (P < 0.05), with a marbling score of 421; 14% of CON animals graded select and 85% graded choice or upper choice. Cattle in the GR20 had the lowest marbling score of 285 (P < 0.05); 59% of the GR20 cattle graded select and 41% graded standard. There was no difference in marbling when comparing the GF25 and GR45 (P > 0.5). In addition, carcasses graded similarly between the two treatments with GF25 grading 13% standard 82% select, and 6% choice, GR45 graded 85% select and 15% choice. The findings from this study indicate that varying CA grass-fed beef production systems results in significant differences in both animal performance and meat quality.


Author(s):  
S C Klopatek ◽  
E Marvinney ◽  
T Duarte ◽  
A Kendall ◽  
X Yang ◽  
...  

Abstract Between increasing public concerns over climate change and heightened interest of niche market beef on social media, the demand for grass-fed beef has increased considerably. However, the demand increase for grass-fed beef has raised many producers' and consumers' concerns regarding product quality, economic viability, and environmental impacts that have thus far gone unanswered. Therefore, using a holistic approach, we investigated the performance, carcass quality, financial outcomes, and environmental impacts of four grass-fed and grain-fed beef systems currently being performed by ranchers in California. The treatments included: 1) steers stocked on pasture and feedyard finished for 128 days (CON); 2) steers grass-fed for 20 months (GF20); 3) steers grass-fed for 20 months with a 45-day grain finish (GR45); and 4) steers grass-fed for 25 months (GF25). The data were analyzed using a mixed model procedure in R with differences between treatments determined by Tukey HSD. Using carcass and performance data from these systems, a weaning-to-harvest life cycle assessment (LCA) was developed in the Scalable, Process-based, Agronomically Responsive Cropping Systems model framework, to determine global warming potential (GWP), consumable water use, energy, smog, and land occupation footprints. Final body weight varied significantly between treatments (P <0.001) with the CON cattle finishing at 632 kg, followed by GF25 at 570 kg, GR45 at 551 kg, and GF20 478 kg. Dressing percentage (DP) differed significantly between all treatments (P < 0.001). The DP was 61.8% for CON followed by GR45 at 57.5%, GF25 at 53.4%, and GF20 had the lowest DP of 50.3%. Marbling scores were significantly greater for CON compared to all other treatments (P < 0.001) with CON marbling score averaging 421 (low-choice ≥ 400). Breakeven costs with harvesting and marketing for the CON, GF20, GR45, and GF25 were $6.01, $8.98, $8.02, and $8.33 per kg hot carcass weight (HCW), respectively. The GWP for the CON, GF20, GR45, and GF25 were 4.79, 6.74, 6.65 and 8.31 CO2e/kg HCW, respectively. Water consumptive use for CON, GF20, GR45, and GF25 were 933, 465, 678 and 1250 L /kg HCW, respectively. Energy use for CON, GF20, GR45, and GF25 were 18.7, 7.65, 13.8 and 8.85 MJ /kg HCW, respectively. Our results indicated that grass-fed beef systems differ in both animal performance and carcass quality resulting in environmental and economic sustainability tradeoffs with no system having absolute superiority.


2012 ◽  
Vol 145 (1-3) ◽  
pp. 239-251 ◽  
Author(s):  
T.T.H. Nguyen ◽  
H.M.G. van der Werf ◽  
M. Eugène ◽  
P. Veysset ◽  
J. Devun ◽  
...  

2020 ◽  
Vol 158 (5) ◽  
pp. 406-415
Author(s):  
G. Ramsbottom ◽  
B. Horan ◽  
K. M. Pierce ◽  
J. R. Roche

AbstractSince 1 April 2015, European dairy milk quotas have been removed resulting in the intensification of dairy production within EU countries. The aim of this study was to evaluate the physical and economic impacts of the initial intensification undertaken within Irish grazing dairy systems. Physical and financial data for 868 seasonal calving dairy farmers with records for each of the years 2013–2017 inclusive were used in this analysis. All analyses were undertaken using a mixed-model framework in PROC MIXED. The overall level of fat plus protein productivity of studied farms increased by 51% during the 5-year period through a combination of increased production per cow, increased operational scale and system intensification. Overall farm net profit was highly variable between years and was greatest in 2017 (€133 836) and least in 2016 (€65 176). When farms were characterized into milk production expansion quartiles, farms in Q1, Q2, Q3 and Q4 increased output by +7, +25, +44 and +86%, respectively. Whereas total farm profit (€/farm) declined for Q1 farms between 2013/2014 and 2016/2017 (€−5257; −7%), the greater expansion undertaken in Q2, Q3 and Q4 resulted in increases of €3046 (+4%), €20 810 (+25%) and €51 604 (+62%), respectively. In all strategies studied, farm profit increased due to a combination of increased revenues, increased pasture utilization and a dilution of per unit production costs. Further investigation of the longer term impacts of expansion is merited, not just in terms of economic indicators, but also in terms of environmental and socio-cultural change.


2021 ◽  
Vol 13 (21) ◽  
pp. 11623
Author(s):  
Klara Van Mierlo ◽  
Louise Baert ◽  
Ellen Bracquené ◽  
Johan De Tavernier ◽  
Annemie Geeraerd

The growing pig production sector is a large contributor of negative impacts to the environment and feed production is responsible for a large part of these impacts. Pig production systems, including feed compositions, are variable, resulting in variable potential environmental impacts. This study investigated the influence of different farm characteristics and feed compositions on the environmental impact of pig production in Flanders. A Life Cycle Assessment approach was followed, including data from 39 farms and monthly feed compositions in the year 2018. Even though feed production contributes significantly to the overall environmental impact of pig production, the results show that environmental impacts are more affected by variabilities in farm characteristics than by fluctuating feed compositions. A higher productivity, in terms of feed conversion efficiency and the number of pigs produced per sow, is generally related to lower environmental impacts. Another influencing factor is the type and amount of energy used. For feed consumption, high variabilities are observed for water use, mainly caused by varying levels of sugar cane molasses. Climate change impacts and variabilities are mainly caused by soy ingredients and their origin. Finally, amino acids show large contributions to the environmental impact of pig feed consumption. Our research highlights that future developments for reducing the environmental impact of pig production should target animal productivity, the type and amount of energy used and selection of protein sources in pig feed.


2016 ◽  
Vol 112 ◽  
pp. 22-31 ◽  
Author(s):  
Akifumi Ogino ◽  
Kritapon Sommart ◽  
Sayan Subepang ◽  
Makoto Mitsumori ◽  
Keisuke Hayashi ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2685 ◽  
Author(s):  
Eva Catalán ◽  
Antoni Sánchez

This article studies the environmental impacts of cellulase production by using a comparative attributional life cycle assessment (LCA) of two different scenarios of production. The first one is the commonly used submerged fermentation (SmF) using a pure substrate (cellulose powder) and a specific microorganism (Trichoderma reesei). The second scenario considers a novel system to produce enzymes and simultaneously treat a waste using the solid-state fermentation (SSF) process of coffee husk (CH) used as substrate. Experimental data were used in this scenario. The complete production process was studied for these two technologies including the fermentation phase and the complete downstream of cellulase. Life cycle inventory (LCI) data were collected from the database EcoInvent v3 (SimaPro 8.5) modified by data from literature and pilot scale experiments. The environmental impacts of both production systems revealed that those of SmF were higher than those of SSF. A sensitivity analysis showed that the results are highly conditioned by the energy use in the form of electricity during lyophilization, which is needed in both technologies. The results point to a possible alternative to produce the cellulase enzyme while reducing environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document