245 Greenhouse Gas Emissions Mitigation Strategies

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 195-196
Author(s):  
Ermias Kebreab ◽  
Mallory Honan ◽  
Breanna Roque ◽  
Juan Tricarico

Abstract Livestock production contributed 3.9% to the total greenhouse gas (GHG) emission from the US in 2018. Most studies to mitigate GHG from livestock are focused on enteric methane because it contributes about 70% of all livestock GHG emissions. Mitigation options can be broadly categorized into dietary and rumen manipulation. Enteric methane emissions are strongly correlated to dry matter intake and somewhat sensitive to diet composition. Dietary manipulation methods include increasing feed digestibility, such as concentrate to forage ratio, or increasing fats and oils, which are associated with lower methane emissions. These reduce digestible fiber that are positively related to methane production and more energy passing the rumen without being degraded, respectively. Rumen manipulation through feed additives can be further classified based on the mode of action: 1. rumen environment modifiers indirectly affecting emissions and 2. direct methanogenesis inhibitors. The rumen environment modifiers act on the conditions that promote methanogenesis. These include ionophores, plant bioactive compounds such as essential oils and tannins, and nitrate rich feeds that serve as alternative hydrogen sinks and directly compete with methanogens thereby reducing methane emissions. The inhibitor category include 3-nitroxypropanol and seaweeds containing halogenated compounds. The former was reported to reduce enteric methane emissions (g/d) by 39% in dairy and 22% in beef cattle. Seaweed, in particular Asparagopsis spp., reduced emissions intensity (g/kg milk) by up to 67% in dairy and emissions yield (g/kg dry matter intake) by up to 98% in beef cattle. Because inhibitors are structural analogs of methane, their mode of action is through competitive inhibition of the methyl transfer reaction catalyzed by methyl coenzyme-M reductase, the last enzyme in methanogenesis. The combination of dietary and rumen manipulation options, including feed additives, is expected to reduce enteric methane emissions by over 30% in the next decade without compromising animal productivity and health.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jennifer L. Owens ◽  
Ben W. Thomas ◽  
Jessica L. Stoeckli ◽  
Karen A. Beauchemin ◽  
Tim A. McAllister ◽  
...  

Abstract The investigative material 3-nitrooxypropanol (3-NOP) can reduce enteric methane emissions from beef cattle. North American beef cattle are often supplemented the drug monensin to improve feed digestibility. Residual and confounding effects of these additives on manure greenhouse gas (GHG) emissions are unknown. This research tested whether manure carbon and nitrogen, and GHG and ammonia emissions, differed from cattle fed a typical finishing diet and 3-NOP [125–200 mg kg−1 dry matter (DM) feed], or both 3-NOP (125–200 mg kg−1 DM) and monensin (33 mg kg−1 DM) together, compared to a control (no supplements) when manure was stockpiled or composted for 202 days. Consistent with other studies, cumulative GHGs (except nitrous oxide) and ammonia emissions were higher from composted compared to stockpiled manure (all P < 0.01). Dry matter, total carbon and total nitrogen mass balance estimates, and cumulative GHG and ammonia emissions, from stored manure were not affected by 3-NOP or monensin. During the current experiment, supplementing beef cattle with 3-NOP did not significantly affect manure GHG or NH3 emissions during storage under the tested management conditions, suggesting supplementing cattle with 3-NOP does not have residual effects on manure decomposition as estimated using total carbon and nitrogen losses and GHG emissions.


2012 ◽  
Vol 92 (4) ◽  
pp. 493-500 ◽  
Author(s):  
J. N. Bernier ◽  
M. Undi ◽  
J. C. Plaizier ◽  
K. M. Wittenberg ◽  
G. R. Donohoe ◽  
...  

Bernier, J. N., Undi, M., Plaizier, J. C., Wittenberg, K. M., Donohoe, G. R. and Ominski, K. H. 2012. Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles. Can. J. Anim. Sci. 92: 493–500. This study was conducted to determine the impact of prolonged cold exposure on dry matter intake (DMI) and enteric methane (CH4) emissions of overwintering beef cows consuming low-quality forage with and without supplemented protein in the form of dried distillers’ grain with solubles (DDGS). The study was carried out with 30 mature, dry, open beef cows (663±52.9 kg) that were fed a low-quality (deficient CP, 6.0% CP) forage (control), low-quality forage supplemented with 10% DDGS (sufficient CP, 8.7% CP; DDGS10) or 20% DDGS (excess CP, 11.6% CP; DDGS20). Carrying out the study from October through February allowed assessment under thermal neutral and prolonged cold conditions typical of the prairie region of Canada (Manitoba, Alberta and Saskatchewan). Average minimum and maximum daily temperatures were 2.7 and 13.8°C in the thermal neutral period, and –23.5 and −11.0°C in the prolonged cold period, respectively. When no protein supplements were offered, cows exposed to prolonged cold consumed less (P=0.01) forage than when exposed to thermal neutral conditions. Enteric CH4 emissions, when measured as litres per day, were not influenced (P>0.05) by dietary protein supplementation, averaging 285.6±11.71, 311.9±11.49 and 282.6±13.02 L d−1 for cows fed control, DDGS10, and DDGS20 diets, respectively. When expressed as a percentage of energy consumed, cows consuming low-quality forage supplemented with 20% DDGS produced 18.5% less (P=0.01) enteric CH4 relative to cows consuming the low-quality forage only, with emissions of 5.3±0.38 and 6.5±0.33% GEI, respectively. Mature beef cows maintained at the same physiological status and dietary regime produced 26.8% less (P=0.001) enteric CH4 (7.1±0.30 vs. 5.2±0.26% GEI) under prolonged cold as compared with thermal neutral conditions. Based on these results, enteric CH4 emissions for the Canadian cow herd that is overwintered outdoors may be overestimated using current International Panel on Climate Change (IPCC) methodology.


2014 ◽  
Vol 94 (4) ◽  
pp. 557-570 ◽  
Author(s):  
Chanhee Lee ◽  
Karen A. Beauchemin

Lee, C. and Beauchemin, K. A. 2014. A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94: 557–570. The purpose of this review is to discuss the risks and benefits of using supplementary nitrate to reduce enteric methane emissions in ruminants based on the results of a meta-analysis. The meta-analysis confirmed possible nitrate poisoning triggered by higher blood methemoglobin levels with increasing nitrate consumption of ruminants: methemoglobin (%)=41.3×nitrate [g kg−1 body weight (BW) d−1]+1.2; R 2=0.76, P<0.001. However, acclimatizing animals to nitrate reduced the toxicity of nitrate: methemoglobin (%)=4.2×nitrate (g kg−1 BW d−1)+0.4, R 2=0.76, P=0.002. Animals fed nitrate reduced enteric methane emissions in a dose-response manner: methane [g kg−1 dry matter intake (DMI)]=−8.3×nitrate (g kg−1 BW d−1)+15.2, R 2=0.80, P<0.001. The reduction of enteric methane emissions due to supplementary nitrate was effective and consistent in both in vitro and in vivo studies and also persistent in several long-term studies. Dry matter intake and live weight gain (LWG) of cattle were not affected by nitrate: DMI change, R 2=0.007, P=0.65; LWG change, R 2=0.03, P=0.31. It is anticipated that supplementary nitrate as a substitute for urea may change urinary nitrogen composition in a manner that increases ammonia and nitrous oxide emissions from manure. Furthermore, supplementary nitrate may have various physiological roles in nitric oxide metabolism in ruminants. In conclusion, supplementary nitrate is a viable means of mitigating enteric methane emissions due to its consistent and persistent efficacy. Risk of toxicity can be lowered by gradual acclimation of animals to nitrate. However, lowered methane production may not re-direct additional metabolizable energy towards animal production.


2016 ◽  
Vol 99 (10) ◽  
pp. 7945-7955 ◽  
Author(s):  
C. Muñoz ◽  
P.A. Letelier ◽  
E.M. Ungerfeld ◽  
J.M. Morales ◽  
S. Hube ◽  
...  

Author(s):  
L R Thompson ◽  
I C F Maciel ◽  
P D R Rodrigues ◽  
K A Cassida ◽  
J E Rowntree

Abstract Greenhouse gas emissions (GHG) from the beef industry is largely attributed to the grazing sector, specifically from beef cattle enteric methane emissions. Therefore, the study objective was to examine how forage diversity impacts forage productivity, nutritive value, animal performance and enteric methane emissions. This study occurred over three consecutive grazing seasons (2018 to 2020) and compared two common Midwest grazing mixtures: 1) a simple, 50:50 alfalfa:orchardgrass mixture (SIMP) and 2) a botanically diverse, cool-season species mixture (COMP). Fifty-six steers and heifers were adapted to an Automated Head Chamber System each year (AHCS; C-Lock Inc., Rapid City, SD) and stratified into treatment groups based on acclimation visitation. Each treatment consisted of four pastures, three 3.2-ha and one 1.6-ha, with 8 and 4 animals each, respectively. Forage production was measured bi-weekly in pre-and post-grazed paddocks, and forage nutritive value was analyzed using near-infrared reflectance spectroscopy (NIRS). Shrunk body weights were taken monthly to determine animal performance. Forage availability did not differ between treatments (P = 0.69) but tended lower in 2018 (P = 0.06; 2.40 t dry matter ha -1) than 2019 (2.92 t dry matter ha -1) and 2020 (P = 0.10; 2.81 t dry matter ha -1). Crude protein was significantly lower for COMP in 2018 compared to SIMP. Forage acid detergent fiber content was significantly lower for the COMP mixture (P = 0.02). The COMP treatment resulted higher dry matter digestibility (IVDMD48) in 2018 and 2019 compared to the SIMP treatment (P &lt; 0.01). Animal performance did not differ between treatments (P &gt; 0.50). There was a tendency for the COMP treatment to have lower enteric CH4 production on a g d -1 basis (P = 0.06), but no difference was observed on an emission intensity basis (g CH4 kg -1 gain; P = 0.56). These results would indicate that adoption of the complex forage mixture would not result in improved forage productivity, animal performance, or reduced emission intensity compared to the simple forage mixture.


2015 ◽  
Vol 93 (11) ◽  
pp. 5367-5377 ◽  
Author(s):  
J. Guyader ◽  
M. Eugène ◽  
M. Doreau ◽  
D. P. Morgavi ◽  
C. Gérard ◽  
...  

2011 ◽  
Vol 91 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Aklilu Alemu ◽  
K. H. Ominski ◽  
E. Kebreab

Alemu, A. W., Ominski, K. H. and Kebreab, E. 2011. Estimation of enteric methane emissions trends (1990–2008) from Manitoba beef cattle using empirical and mechanistic models. Can. J. Anim. Sci. 91: 305–321. The objective of this study was to estimate and assess trends in enteric methane (CH4) emissions from the Manitoba beef cattle population from the base year of 1990 to 2008 using mathematical models. Two empirical (statistical) models: Intergovernmental Panel on Climate Change (IPCC) Tier 2 and a nonlinear equation (Ellis), and two dynamic mechanistic models: MOLLY (v3) and COWPOLL were used. Beef cattle in Manitoba were categorized in to 29 distinct subcategories based on management practice, physiological status, gender, age and production environment. Data on animal performance, feeding and management practices and feed composition were collected from the literature as well as from provincial and national sources. Estimates of total enteric CH4 production from the Manitoba beef cattle population varied between 0.9 and 2.4 Mt CO2 eq. from 1990 to 2008. Regardless of the type of models used, average CH4 emissions for 2008 were estimated to be 45.2% higher than 1990 levels. More specifically, CH4 emissions tended to increase between 1990 and 1996. Emissions were relatively stable between 1996 and 2002, increased between 2003 and 2005, but declined by 13.2% between 2005 and 2008, following the same trend as that observed in the beef cattle population. Models varied in their estimates of CH4 conversion rate (Ym, percent gross energy intake), emission factor (kg CH4 head−1 yr−1) and CH4 production. Total CH4 production estimates ranged from 1.2 to 2.0 Mt CO2 eq. for IPCC Tier 2, from 0.9 to 1.5 Mt CO2 eq. for Ellis, from 1.3 to 2.1 Mt CO2 eq. for COWPOLL and from 1.5 to 2.4 Mt CO2 eq. for MOLLY. The results indicate that enteric CH4 estimates and emission trends in Manitoba were influenced by the type of model and beef cattle population. As such, it is necessary to use appropriate models for reliable estimates for enteric CH4 inventory. A more robust approach may be to integrate different models by using mechanistic models to estimate regional Ym values, which may then be used as input for the IPCC Tier 2 model.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 380-381
Author(s):  
Isabella Cristina F Maciel ◽  
Fabiano A Barbosa ◽  
Thierry R Tomich ◽  
Ramon C Alvarenga ◽  
Ludhiana R Ferreira ◽  
...  

Abstract Crossbreeding has been used to improve performance in beef cattle; however, the effects of breed composition on methane production, yield and intensity from cattle in a tropical intensive system remain unknown. To assess the impact of breed composition on enteric methane emissions, Nellore (NE; yr 1: BW = 171.5 ± 19.4 kg; n = 10; yr 2: BW = 215.8 ± 32.3 kg, n = 25) and Angus-Nellore crossbred (AN; yr 1: BW = 214.2 ± 26.4 kg, n = 10; yr 2: BW = 242.5 ± 32.2 kg, n = 25) were compared. At trial onset, 10 mo old steers grazed Megathyrsus maximus ‘Mombaça’ in the grazing period (GP) and then were finished in a feedlot (FL) (35:65% corn silage:concentrate diet). Steers (n = 8) from each breed composition were randomly selected in GP and FL to measure CH4 production using a sulfur hexafluoride technique and DMI using titanium dioxide. The NE produced 19% less CH4 than AN in GP (17.21 vs 21.17 kg, P &lt; 0.01), and no difference was observed in FL (22.34 vs 22.67 kg, P &gt; 0.10). However, in FL, NE had greater CH4 intensity (CH4/ADG) compared to AN (122.76 vs 97.49 g/kg, P &lt; 0.01). Furthermore, CH4/carcass weight was greater for NE than AN (0.079 vs 0.067 g/kg CW, P &lt; 0.01). Breed composition did not influence CH4 yield (CH4/DMI) in either phase. The percentage CH4/GEI (Ym) for GP was higher for AN than NE (4.5 vs 3.8%), but lower than the IPCC recommended Ym of 6.5%. In FL, Ym was similar between breed composition (5.0%) and greater than the IPCC Ym of 3%. In our study the introduction of Angus into Nellore has potential to reduce CH4 intensity in tropical climates, resulting in less methane emission per kg beef produced.


2018 ◽  
Vol 58 (3) ◽  
pp. 517 ◽  
Author(s):  
A. F. Ribeiro ◽  
J. D. Messana ◽  
A. José Neto ◽  
J. F. Lage ◽  
G. Fiorentini ◽  
...  

Forty young Nellore bulls were used to determine the effects of different sources of forage in concentrate-rich diets containing crude glycerine on feed intake, performance, and enteric methane emissions. Ten animals (397 ± 34 kg and 20 ± 2 months of age) were slaughtered to estimate the initial carcass weights, and the remaining 30 animals (417 ± 24.7) were randomly assigned to three treatments with 10 replicates. The treatments consisted of three different sources of forage [NDF from forage (fNDF) was fixed 15% of dry matter]; corn silage, sugarcane, and sugarcane bagasse; in diets rich in concentrates with 10% dry matter crude glycerine. There were no differences in the intake of dry matter, organic matter, crude protein, neutral detergent fibre, gross energy, or metabolisable energy. No effects of the type of forage were observed on performance or enteric methane emissions. These results suggest that alternatives to corn silage that have high fibre content, such as sugarcane and sugarcane bagasse, do not significantly affect the intake, performance, or enteric methane emissions of young Nellore bulls.


Sign in / Sign up

Export Citation Format

Share Document