PSVIII-8 Genetic parameters for parasite resistance in an endangered and heritage sheep breed from Florida

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 242-242
Author(s):  
Zaira M Estrada-Reyes ◽  
Jorge A Hidalgo Moreno ◽  
Brittany N Diehl ◽  
Ibukun M Ogunade ◽  
Andres A Pech-Cervantes ◽  
...  

Abstract The Florida Native Sheep is one of the oldest sheep breeds in the United States. This heritage breed from Florida, naturally adapted to humid and hot climate conditions, is one of the most parasite resistant breeds from the Southern US. However, only approximately 1,000 individuals remain alive in the world. Therefore, conservation efforts and breeding programs are critical for survival of this breed. The objective of this research was to estimate genetic parameters for parasite resistance and body condition score in Florida Native sheep. The pedigree file contained 695 animals born between 2018 and 2020 and included 279 individuals with genotypes (38,429 SNP after quality control). The dataset contained 365 animals with phenotypic records at 38 days post-infection (natural Haemonchus contortus infection) for fecal egg count (FEC), blood packed count volume (PCV), FAMACHA score (FAM), and body condition score (BCS). Genetic parameters were estimated using a multi-trait model with a Bayesian implementation in the GIBBS3F90 program. Heritabilities were 0.38 0.07, 0.47 0.05, 0.27 0.04, and 0.52 0.07 for FEC, PCV, FAM, and BCS. Genetic correlations among parasite resistance traits were high and favorable: -0.82 0.06 (FEC-PCV), 0.83 0.07 (FEC-FAM), and -0.94 0.03 (PCV-FAM). Genetic correlations among parasite resistance traits and BCS were -0.42 0.11 (FEC-BCS), 0.75 0.09 (PCV-BCS), and -0.82 0.05 (FAM-BCS). Genetic progress for parasite resistance is possible in Florida Native sheep. The FAMACHA score is a phenotypic parameter easy to record in sheep; therefore, genetic selection for this trait can be effective to improve the remaining traits.

Author(s):  
M N Boareki ◽  
F S Schenkel ◽  
O Willoughby ◽  
A Suarez-Vega ◽  
D Kennedy ◽  
...  

Abstract Fecal egg count (FEC) is an indicative measurement for parasite infection in sheep. Different FEC methods may show inconsistent results. Not accounting for inconsistencies can be problematic when integrating measurements from different FEC methods for genetic evaluation. The objectives of this study were to evaluate the difference in means and variances between two fecal egg counting methods used in sheep, the Modified McMaster (LMMR) and the Triple Chamber McMaster (LTCM); to estimate variance components for the two FEC methods, treating them as two different traits; and to integrate FEC data from the two different methods and estimate genetic parameters for FEC and other gastrointestinal parasite resistance traits. Fecal samples were collected from a commercial Rideau-Arcott sheep farm in Ontario. Fecal egg counting was performed using both Modified McMaster and the Triple Chamber McMaster methods. Other parasite resistance trait records were collected from the same farm including eye score (FAMACHA ©), body condition score (BCS), and body weight (WT). The two FEC methods were highly genetically (0.94) and phenotypically (0.88) correlated. However, the mean and variance between the two FEC methods were significantly different (P < 0.0001). Therefore, re-scaling is required prior to integrating data from the different methods. For the multiple trait analysis, data from the two fecal egg counting methods were integrated (LFEC) by using records for the LMMR when available and replacing missing records with re-standardized LTCM records converted to the same mean and variance of LMMR. Heritability estimates were 0.12 ± 0.04, 0.07 ± 0.05 , 0.17 ± 0.06, and 0.24 ± 0.07 for LFEC egg count, FAMACHA ©, BCS, and WT, respectively. The estimated genetic correlations between fecal egg count and the other parasite resistance traits were low and not significant (P>0.05) for FAMACHA © (r= 0.24 ± 0.32) and WT (r= 0.22 ± 0.19), and essentially zero for BCS (r= -0.03 ± 0.25), suggesting little to no benefit of using such traits as indicators for LFEC.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 232-233
Author(s):  
Mohammed N Boareki ◽  
Olivia Willoughby ◽  
Delma Kennedy ◽  
Aroa Suarez-Vega ◽  
Larry Schaeffer ◽  
...  

Abstract Fecal egg count (FEC) is an indicative measurement for parasite infection in sheep. Different FEC methods may show inconsistent results. Not accounting for inconsistencies can be problematic when integrating measurements from different FEC methods for genetic evaluation. The objectives of this study were to: evaluate the difference between two FEC methods, the Modified McMaster (LMMR) and the Triple Chamber McMaster (LTCM); estimate the genetic and phenotypic correlations between records from two methods; and estimate genetic parameters for FEC and other gastrointestinal parasite resistance traits. A total of 1,676 fecal samples were collected from a commercial sheep farm between 2012 and 2019. Fecal egg counting was performed using the Modified McMaster (n = 998) and the Triple Chamber McMaster (n = 678) methods. Other parasite resistance trait records were collected from the same farm including eye score (FAMACHA©), body condition score (BCS), and body weight (WT). The mean and variance between the two FEC methods were significantly different (P < 0.0001), but phenotypic and genetic correlations between them were high (0.88 and 0.94, respectively). Therefore, pre-adjustment is required prior to integrating data from the different methods. For multiple trait analysis with other parasite resistance traits, data from the two fecal egg counting methods were integrated (LFEC) by using records for the LMMR when available and replacing missing records with standardized LTCM records for mean and variance of LMMR. Heritability estimates were 0.12, 0.07, 0.17, and 0.24, for LFEC, FAMACHA©, BCS, and the WT, respectively. Estimated genetic correlations between fecal egg count and the other parasite resistance traits were low with FAMACHA© (0.24), BCS (-0.03), and WT (0.22), suggesting little to no benefit of using such traits as indicators for LFEC.


1996 ◽  
Vol 47 (8) ◽  
pp. 1251 ◽  
Author(s):  
DJ Johnston ◽  
H Chandler ◽  
HU Graser

Heritabilities and genetic correlations for cow weight and body condition score were estimated from field data for 3 beef breeds in Australia. In all, 8177 cows of mixed ages were weighed and scored for body condition at calf weaning time in seedstock herds as part of a large research project. The average weaning age was 212, 221, and 218 days for Angus, Hereford, and Poll Hereford, respectively. Cow weights and condition scores were analysed separately for each breed and estimates of genetic parameters were obtained by Restricted Maximum Likelihood (REML). Cow weight and condition score were moderately heritable: h2 = 0.43 and 0.21 for Angus, 0.39 and 0.14 for Hereford, and 0.48 and 0.17 for Poll Hereford. The genetic correlation between CW and CS was 0.49, 0.65, and 0.58 for Angus, Hereford, and Poll Hereford, respectively. There is potential for providing a genetic evaluation for cow weight using field data in Australian beef cattle. Its modelling for inclusion in a multiple trait genetic evaluation system such as BREEDPLAN is discussed.


2009 ◽  
Vol 49 (6) ◽  
pp. 399 ◽  
Author(s):  
D. J. Johnston ◽  
S. A. Barwick ◽  
N. J. Corbet ◽  
G. Fordyce ◽  
R. G. Holroyd ◽  
...  

A total of 2115 heifers from two tropical genotypes (1007 Brahman and 1108 Tropical Composite) raised in four locations in northern Australia were ovarian-scanned every 4–6 weeks to determine the age at the first-observed corpus luteum (CL) and this was used to define the age at puberty for each heifer. Other traits recorded at each time of ovarian scanning were liveweight, fat depths and body condition score. Reproductive tract size was measured close to the start of the first joining period. Results showed significant effects of location and birth month on the age at first CL and associated puberty traits. Genotypes did not differ significantly for the age or weight at first CL; however, Brahman were fatter at first CL and had a small reproductive tract size compared with that of Tropical Composite. Genetic analyses estimated the age at first CL to be moderately to highly heritable for Brahman (0.57) and Tropical Composite (0.52). The associated traits were also moderately heritable, except for reproductive tract size in Brahmans (0.03) and for Tropical Composite, the presence of an observed CL on the scanning day closest to the start of joining (0.07). Genetic correlations among puberty traits were mostly moderate to high and generally larger in magnitude for Brahman than for Tropical Composite. Genetic correlations between the age at CL and heifer- and steer-production traits showed important genotype differences. For Tropical Composite, the age at CL was negatively correlated with the heifer growth rate in their first postweaning wet season (–0.40) and carcass marbling score (–0.49), but was positively correlated with carcass P8 fat depth (0.43). For Brahman, the age at CL was moderately negatively genetically correlated with heifer measures of bodyweight, fatness, body condition score and IGF-I, in both their first postweaning wet and second dry seasons, but was positively correlated with the dry-season growth rate. For Brahman, genetic correlations between the age at CL and steer traits showed possible antagonisms with feedlot residual feed intake (–0.60) and meat colour (0.73). Selection can be used to change the heifer age at puberty in both genotypes, with few major antagonisms with steer- and heifer-production traits.


2019 ◽  
Vol 59 (7) ◽  
pp. 1209 ◽  
Author(s):  
Viviane V. de Lacerda ◽  
Gabriel S. Campos ◽  
Daniel D. Silveira ◽  
Vanerlei M. Roso ◽  
Mario L. Santana ◽  
...  

The size and body condition of female livestock is critical for improving production efficiency. However, we know little about how height and body condition score in mature beef cattle are genetically related to traits observed when the animals are younger. In the present study, we used data from 321650 Nelore cattle, first, to compare genetic parameters and breeding values on the basis of different models employing weight (MW), height (MH) and body condition score (BCS) of mature cows (3–17 years old). Next, we estimated the genetic correlations between the three traits and assorted yearling traits (YW, weight; YC; conformation score; YP, precocity score; YM, muscling score; YN, navel score; LMA, longissimus muscle area; BF, back fat thickness). Finally, we obtained the expected direct responses to selection for MW, MH and BCS of cows and correlated responses for these traits when the selection was applied to yearling traits. For MW and MH, single-trait Bayesian analyses were used to evaluate the effects of including BCS when defining contemporary groups (BCS included, CG1; BCS not included, CG2). For BCS trait, linear and threshold animal models were compared. After, bi-trait analyses that included MW, MH or BCS with yearling traits were performed. The CG1 scenario resulted in a higher heritability for MW (0.45 ± 0.02) than did CG2 (0.39 ± 0.02). Both scenarios yielded the same heritability estimates for MH (0.35 ± 0.02). Sires’ rank correlations between predicted breeding values under CG1 and CG2 were 0.60–0.92 for MW and 0.90–0.98 for MH, considering different selection intensities. Thus, only for MW genetic evaluations, the incorporation of BCS in the definition of the contemporary groups is indicated. For BCS trait, the same sires were selected regardless of the model (linear or threshold). Genetic correlations between MW and five yearling traits (YW, YC, YP, YM and YN) ranged from 0.18 ± 0.03 to 0.84 ± 0.01. The MH had a higher and positive genetic association with YW (0.64 ± 0.02) and YC (0.54 ± 0.03), than with YN (0.18 ± 0.03). However, MH was negatively and lowly genetically correlated with YP (–0.08 ± 0.03) and YM (–0.14 ± 0.03). The BCS had positive genetic associations with all yearling traits, particularly with YP (0.61 ± 0.06) and YM (0.60 ± 0.07). Mature size and carcass traits exhibited a low to moderate negative genetic correlations. However, BCS had positive genetic associations with LMA (0.38 ± 0.12) and BF (0.32 ± 0.14). Despite a shorter generation interval, selection at the yearling stage will result in a slower genetic progress per generation than does direct selection for cow MW, MH or BCS. Moreover, using YW and YC as selection criteria will increase cattle size at maturity without altering BCS. Last, LMA or BF-based selection will reduce mature size, while improving BCS, as a correlated response.


2013 ◽  
Vol 96 (8) ◽  
pp. 5344-5351 ◽  
Author(s):  
M. Battagin ◽  
C. Sartori ◽  
S. Biffani ◽  
M. Penasa ◽  
M. Cassandro

Sign in / Sign up

Export Citation Format

Share Document