PSIV-1 A comparison of chromatography methods to estimate ruminal VFA concentrations

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 295-295
Author(s):  
Genevieve M D’Souza ◽  
Kelsey Harvey ◽  
Luiz Fernando Dias Batista ◽  
Reinaldo F Cooke ◽  
Luis O Tedeschi

Abstract The objective of this study was to describe two chromatography equipment and their methods (EM) and to evaluate their adequacy in estimating ruminal volatile fatty acid concentrations (VFA). Adequacy was assessed through precision and accuracy using three standard mixtures of known acetate, propionate, and butyrate concentrations. The standard mixtures were prepared for VFA analysis using high-performance liquid chromatography (HPLC) or gas chromatography (GC). Each mixture was injected ten times into each EM. The comparison was assessed with rumen fluid samples from four cannulated steers offered three diets at 2% BW. Diet A simulated a forage-based diet offered to cattle during the winter. Diet B simulated a grower-type diet offered to weaned calves. Diet C simulated a finisher-type diet offered to finishing cattle. Rumen fluid was collected three hours after the morning feeding for seven days for each diet and strained through 8 μm porosity fiberglass wool. Two 2-mL aliquots were stored at -20°C for HPLC analysis, while two 8-mL aliquots were diluted with 2 mL of 25% meta-phosphoric acid and stored at -20°C for GC analysis. Chromatograms without a flat baseline were removed from the analysis. For the adequacy evaluation, HPLC (R2 = 0.997; Cb = 0.874) was more precise and accurate at estimating total VFA than GC (R2 = 0.447; Cb = 0.763). When compared with the standards, HPLC estimated less (P < 0.001) total VFA (98.8 ± 10.3 mM) than GC (110.5 ± 17.4 mM). Concentrations for acetate, propionate, and butyrate in rumen fluid samples were estimated for each EM and analyzed using a random coefficients model. Similarly, estimates for acetate, propionate, and butyrate were less for HPLC than GC (P ≤ 0.002). VFA estimation differs depending on EM chosen. Further research should identify the source of difference in VFA estimation from each EM.

2020 ◽  
Vol 16 ◽  
Author(s):  
Yun-Yan Xia ◽  
Qiao-Gen Zou ◽  
Yu-Fei Yang ◽  
Qian Sun ◽  
Cheng-Qun Han

Background: High-performance liquid chromatography (HPLC) method has been used to detect related impurities of perampanel. However, the detection of impurities is incomplete, and the limits of quantification and detection are high. A sensitive, reliable method is in badly to be developed and applied for impurity detection of perampanel bulk drug. Objective: Methodologies utilising HPLC and gas chromatography (GC) were established and validated for quantitative determination of perampanel and its related impurities (a total of 10 impurities including 2 genotoxic impurities). Methods: The separation was achieved on a Dikma Diamonsil C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.01 mol/L potassium dihydrogen phosphate solution (A) and acetonitrile (B) in gradient elution mode. The compound 2-bromopropane was determined on an Agilent DB-624 column (0.32 mm × 30 m, 1.8 μm) by electron capture detector (μ-ECD) with split injection ratio of 1:5 and proper gradient temperature program. Result: Both HPLC and GC methods were established and validated to be sensitive, accurate and robust according to International Council for Harmonization (ICH) guidelines. The methods developed were linear in the selected concentration range (R 2≥0.9944). The average recovery of all impurities was between 92.6% and 103.3%. The possible production mechanism of impurities during the synthesis and degradation processes of perampanel bulk drug was also discussed. Five impurities were analyzed by liquid chromatography–mass spectrometry (LC-MS). Moreover, two of them were simultaneously characterized by LC-MS, IR and NMR. Conclusion: The HPLC and GC methods were developed and optimized, which could be applied for quantitative detection of the impurities, and further stability study of perampanel.


1986 ◽  
Vol 49 (5) ◽  
pp. 383-388 ◽  
Author(s):  
PETER SPORNS ◽  
SUET KWAN ◽  
LAWRENCE A. ROTH

Oxytetracycline (OTC), also known commercially as Terramycin, was determined to be more stable in honey than in buffered aqueous solutions at similar pH values and temperatures. A rapid high performance liquid chromatography (HPLC) method was developed to detect and quantitate OTC using a 1:1 dilution (wt/wt) of honey samples in water. Using 355 nm as the wavelength of detection, amounts as low as 0.5 μg/ml could be detected in the above solution. The limits of detection were lowered considerably by a double extraction procedure.


Sign in / Sign up

Export Citation Format

Share Document