Phenotypic and genetic associations between feeding behavior and carcass merit in crossbred growing cattle

2021 ◽  
Vol 99 (12) ◽  
Author(s):  
David N Kelly ◽  
Roy D Sleator ◽  
Craig P Murphy ◽  
Stephen B Conroy ◽  
Donagh P Berry

Abstract In growing cattle, the phenotypic and genetic relationships between feeding behavior and both live animal ultrasound measures and subsequent carcass merit are generally poorly characterized. The objective of the current study was to quantify the phenotypic and genetic associations between a plethora of feeding behavior traits with both pre-slaughter ultrasound traits and post-slaughter carcass credentials in crossbred Bos taurus cattle. Carcass data were available on 3,146 young bulls, steers, and heifers, of which 2,795 and 2,445 also had records for pre-slaughter ultrasound muscle depth and intramuscular fat percentage, respectively; a total of 1,548 steers and heifers had information on all of the feeding behavior, ultrasound, and carcass traits. Young bulls were fed concentrates, while steers and heifers were fed a total mixed ration. Feeding behavior traits were defined based on individual feed events or meal events (i.e., individual feed events grouped into meals). Animal linear mixed models were used to estimate (co)variance components. Phenotypic correlations between feeding behavior and both ultrasound and carcass traits were generally weak and not different from zero, although there were phenotypic correlations of 0.40, 0.26, and 0.37 between carcass weight and feeding rate, energy intake per feed event, and energy intake per meal, respectively. Genetically, cattle that had heavier carcass weights, better carcass conformation, or a higher dressing percentage fed for a shorter time per day (genetic correlations [±SE] of −0.46 ± 0.12, −0.39 ± 0.11, and −0.50 ± 0.10, respectively). Genetic correlations of 0.43 ± 0.12 and 0.68 ± 0.13 were estimated between dressing difference (i.e., differential between live weight pre-slaughter and carcass weight) and energy intake per feed event and energy intake per meal, respectively. Neither intramuscular fat percentage measured on live animals nor carcass fat score (i.e., a measure of subcutaneous fat cover of the carcass) was genetically associated with any of the feeding behavior traits. The genetic associations between some feeding behavior traits and both ultrasound and carcass traits herein suggested that indirect responses in the feeding behavior of growing cattle from selection for improved carcass merit would be expected. Such changes in feeding behavior patterns in cattle may be reduced by measuring and including feeding behavior in a multiple-trait selection index alongside carcass traits.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 233-234
Author(s):  
David N Kelly ◽  
Roy D Sleator ◽  
Craig P Murphy ◽  
Stephen B Conroy ◽  
Donagh P Berry

Abstract To the best of our knowledge, the genetic variability in feeding behavior, as well as relationships with performance and feed efficiency, has not been investigated in a cattle population of greater than 1,500 animals. Our objective was to quantify the genetic parameters of several feeding behavior traits, and their genetic associations with both performance and feed efficiency traits, in crossbred growing cattle. Feed intake and live-weight data were available on 6,088 bulls, steers and heifers; of these, 4,672 cattle had backfat and muscle ultrasound data, and 1,548 steers and heifers had feeding behavior data. Genetic (co)variance parameters were estimated using animal linear mixed models; fixed effects included test group, heterosis, recombination loss, dam parity, age in months at the end of test, and the two-way interaction between age in months at the end of test and sex. Heritability was estimated to be 0.51 (0.097), 0.61 (0.100), 0.44 (0.093), 0.48 (0.094), and 0.47 (0.095) for feed events per day, feeding time per day, feeding rate, feed event duration, and energy intake per feed event, respectively. Coefficients of genetic variation ranged from 0.11 (feeding time per day) to 0.22 (feed event duration). Genetically heavier cattle with a higher energy intake per day, and faster growth rate, had a faster feeding rate and a greater energy intake per feed event. Genetic correlations between feeding behavior and feed efficiency were generally not different from zero, however, there was a genetic correlation of 0.36 (0.11) between feeding time per day and residual energy intake. Significant heritable and exploitable genetic variation exists in several feeding behavior traits in crossbred growing cattle which are also correlated with several performance traits. As some feeding behavior traits may be relatively less resource intensive to measure, they could be useful as predictor traits in beef cattle genetic evaluations.


2006 ◽  
Vol 46 (2) ◽  
pp. 225 ◽  
Author(s):  
W. S. Pitchford ◽  
H. M. Mirzaei ◽  
M. P. B. Deland ◽  
R. A. Afolayan ◽  
D. L. Rutley ◽  
...  

During a 4-year period (1994–97) of the Australian ‘Southern Crossbreeding Project’, mature Hereford cows (n = 637) were mated to 97 sires from 7 breeds (Jersey, Wagyu, Angus, Hereford, South Devon, Limousin and Belgian Blue), resulting in 1334 calves. Heifers were slaughtered at around 16 months and steers at 23 months. The objective of the study was to quantify between- and within-breed genetic variation for numerous production and quality traits in a southern-Australian production system. Calf survival, birth weight and carcass production traits (carcass weight, fat depth, loin eye area, intramuscular fat) were obtained from these cattle. The carcass traits were loge-transformed because of a scale effect on the variance. Data were analysed using multi-variate animal models containing fixed effects of sex with random effects of management group, sire breed and animal. In addition, birth month and age of dam were included as fixed effects for birth weight. Covariances between survival and other traits could not be estimated from the multi-variate model so they were estimated from a series of bi-variate models. On average, management group and sire breed accounted for similar proportions of variance. Heritability ranged from 0.14 (survival), 0.17 (intramuscular fat), 0.28 (loin eye area), 0.29 (P8 fat depth), 0.31 (birth weight) to 0.50 (carcass weight). In general, environmental (management and residual) correlations between meat (carcass weight and loin eye area) and fat traits (fat depth and intramuscular fat) were positive, but the genetic correlations (both between and within breed) were negative. Management and genetic (co)variation has been quantified and can facilitate production of calves with carcasses suitable for specific market requirements.


2002 ◽  
Vol 80 (8) ◽  
pp. 2017 ◽  
Author(s):  
R. L. Sapp ◽  
J. K. Bertrand ◽  
T. D. Pringle ◽  
D. E. Wilson

2019 ◽  
Vol 99 (2) ◽  
pp. 296-306
Author(s):  
Daniel Duarte da Silveira ◽  
Lucas De Vargas ◽  
Rodrigo Junqueira Pereira ◽  
Gabriel Soares Campos ◽  
Ricardo Zambarda Vaz ◽  
...  

The aim of this study was to evaluate the genetic variability, genetic and phenotypic associations, and genetic gains of birth (BW), weaning (WW), and yearling (YW) weights, loin muscle area (LMA), backfat thickness (BF), rump fat thickness (RF), scores of body structure (BS), finishing precocity (FS), and muscling (MS) in Nelore cattle. Genetic parameters were obtained through Bayesian inference using BLUPF90 programs. All studied traits showed genetic variability, with heritability ranging from 0.29 to 0.47. In all studied ages, weights presented positive genetic correlations with LMA (ranging from 0.13 to 0.53), being generally stronger in comparison with the other carcass traits analyzed (BF and RF). Similarly, weights were higher genetic associated with BS (0.47–0.92) than with FS (0.18–0.62) and MS (0.22–0.65), respectively. The BF and RF showed positive and moderate genetic associations with FS and MS (0.31–0.36). Genetic trends were significant (P < 0.05) and favorable for WW, YW, and visual scores. Selection for increasing BW, WW, YW, and LMA will result in modest or no change in BF and RF (correlated response ranging from −0.04 to 0.07 mm per generation). In this population, carcass traits must be included in the selection indexes to obtain genetic gains in carcass quality, if desired.


2019 ◽  
Vol 59 (7) ◽  
pp. 1209 ◽  
Author(s):  
Viviane V. de Lacerda ◽  
Gabriel S. Campos ◽  
Daniel D. Silveira ◽  
Vanerlei M. Roso ◽  
Mario L. Santana ◽  
...  

The size and body condition of female livestock is critical for improving production efficiency. However, we know little about how height and body condition score in mature beef cattle are genetically related to traits observed when the animals are younger. In the present study, we used data from 321650 Nelore cattle, first, to compare genetic parameters and breeding values on the basis of different models employing weight (MW), height (MH) and body condition score (BCS) of mature cows (3–17 years old). Next, we estimated the genetic correlations between the three traits and assorted yearling traits (YW, weight; YC; conformation score; YP, precocity score; YM, muscling score; YN, navel score; LMA, longissimus muscle area; BF, back fat thickness). Finally, we obtained the expected direct responses to selection for MW, MH and BCS of cows and correlated responses for these traits when the selection was applied to yearling traits. For MW and MH, single-trait Bayesian analyses were used to evaluate the effects of including BCS when defining contemporary groups (BCS included, CG1; BCS not included, CG2). For BCS trait, linear and threshold animal models were compared. After, bi-trait analyses that included MW, MH or BCS with yearling traits were performed. The CG1 scenario resulted in a higher heritability for MW (0.45 ± 0.02) than did CG2 (0.39 ± 0.02). Both scenarios yielded the same heritability estimates for MH (0.35 ± 0.02). Sires’ rank correlations between predicted breeding values under CG1 and CG2 were 0.60–0.92 for MW and 0.90–0.98 for MH, considering different selection intensities. Thus, only for MW genetic evaluations, the incorporation of BCS in the definition of the contemporary groups is indicated. For BCS trait, the same sires were selected regardless of the model (linear or threshold). Genetic correlations between MW and five yearling traits (YW, YC, YP, YM and YN) ranged from 0.18 ± 0.03 to 0.84 ± 0.01. The MH had a higher and positive genetic association with YW (0.64 ± 0.02) and YC (0.54 ± 0.03), than with YN (0.18 ± 0.03). However, MH was negatively and lowly genetically correlated with YP (–0.08 ± 0.03) and YM (–0.14 ± 0.03). The BCS had positive genetic associations with all yearling traits, particularly with YP (0.61 ± 0.06) and YM (0.60 ± 0.07). Mature size and carcass traits exhibited a low to moderate negative genetic correlations. However, BCS had positive genetic associations with LMA (0.38 ± 0.12) and BF (0.32 ± 0.14). Despite a shorter generation interval, selection at the yearling stage will result in a slower genetic progress per generation than does direct selection for cow MW, MH or BCS. Moreover, using YW and YC as selection criteria will increase cattle size at maturity without altering BCS. Last, LMA or BF-based selection will reduce mature size, while improving BCS, as a correlated response.


2019 ◽  
Vol 97 (11) ◽  
pp. 4405-4417 ◽  
Author(s):  
David N Kelly ◽  
Craig Murphy ◽  
Roy D Sleator ◽  
Michelle M Judge ◽  
Stephen B Conroy ◽  
...  

Abstract Some definitions of feed efficiency such as residual energy intake (REI) and residual gain (RG) may not truly reflect production efficiency. The energy sinks used in the derivation of the traits include metabolic live-weight; producers finishing cattle for slaughter are, however, paid on the basis of carcass weight, as opposed to live-weight. The objective of the present study was to explore alternative definitions of REI and RG which are more reflective of production efficiency, and quantify their relationship with performance, ultrasound, and carcass traits across multiple breeds and sexes of cattle. Feed intake and live-weight records were available on 5,172 growing animals, 2,187 of which also had information relating to carcass traits; all animals were fed a concentrate-based diet representative of a feedlot diet. Animal linear mixed models were used to estimate (co)variance components. Heritability estimates for all derived REI traits varied from 0.36 (REICWF; REI using carcass weight and carcass fat as energy sinks) to 0.50 (traditional REI derived with the energy sinks of both live-weight and ADG). The heritability for the RG traits varied from 0.24 to 0.34. Phenotypic correlations among all definitions of the REI traits ranged from 0.90 (REI with REICWF) to 0.99 (traditional REI with REI using metabolic preslaughter live-weight and ADG). All were different (P < 0.001) from one suggesting reranking of animals when using different definitions of REI to identify efficient cattle. The derived RG traits were either weakly or not correlated (P > 0.05) with the ultrasound and carcass traits. Genetic correlations between the REI traits with carcass weight, dressing difference (i.e., live-weight immediately preslaughter minus carcass weight) and dressing percentage (i.e., carcass weight divided by live-weight immediately preslaughter) implies that selection on any of the REI traits will increase carcass weight, lower the dressing difference and increase dressing percentage. Selection on REICW (REI using carcass weight as an energy sink), as opposed to traditional REI, should increase the carcass weight 2.2 times slower but reduce the dressing difference 4.3 times faster. While traditionally defined REI is informative from a research perspective, the ability to convert energy into live-weight gain does not necessarily equate to carcass gain, and as such, traits such as REICW and REICWF provide a better description of production efficiency for feedlot cattle.


2005 ◽  
Vol 85 (4) ◽  
pp. 463-473 ◽  
Author(s):  
R. Bergen ◽  
S. P. Miller ◽  
J. W. Wilton

Genetic correlations were examined among 10 live growth and ultrasound traits measured in yearling beef bulls (n = 2172) and four carcass traits measured in crossbred finished feedlot steers (n = 1031). Heritabilities ranged from 0.13 (bull ultrasound longissimus muscle width) to 0.83 (yearling bull hip height). Genetic correlations indicated that selecting yearling bulls for increased growth rate and hip height would lead to higher carcass weight, increased longissimus muscle area and reduced levels of carcass marbling in steers. Bull ultrasound fat depth was positively associated with both carcass fat depth and marbling score. Most ultrasound longissimus muscle size measurements in bulls were positively associated with each other and with carcass longissimus muscle area in steers, but the magnitude of the genetic correlation with carcass measurements depended on the bull longissimus muscle size trait in question. This suggests that longissimus muscle shape in bulls may be related to carcass weight, fat and muscle traits in steers. Results confirm that while ultrasound is a valuable tool for the genetic improvement of carcass traits in beef cattle, genetic correlations between live bull ultrasound and steer carcass traits less then unity suggest that selection would benefit from multiple trait evaluations in situations where reliable carcass data are available. Key words: Ultrasound, beef carcass, heritability, genetic correlation


Author(s):  
Eser Kemal Gurcan ◽  
Dogan Narinc ◽  
Selcuk Kaplan

This study aimed to determine the phenotypic values of the slaughter and carcass traits in the flocks of quails obtained when a flock of parent quails were at 12, 16, and 20 weeks of age and to estimate the heritabilities and the genetic correlations for these traits. For this purpose, a total of 1,346 Japanese quails were slaughtered at 8 weeks of age, and their slaughter weights as well as carcass, breast, leg, and abdominal fat weights and ratios were determined. Differences in all traits were detected between female and male quails (P<0.05). The averages of many important traits, primarily slaughter weight, carcass weight, and breast weight, increased with the increase in the breeder age. On the contrary, the carcass yield decreased (P<0.05). There were no significant variations in the phenotypic and genetic variances for the slaughter and carcass traits in the flocks obtained when the breeder flock was at different ages. The heritabilities for slaughter weight, carcass weight, and abdominal fat weight were estimated to be moderate, and the genetic correlations among them were estimated to be positive and high. In conclusion, it is possible to state that positive results might be obtained by using the carcass ratio as the criterion for selection in quails. Besides, the breeder age was discovered to have had no significant effect on the genetic parameter estimations.


1986 ◽  
Vol 66 (4) ◽  
pp. 905-914 ◽  
Author(s):  
J. N. B. SHRESTHA ◽  
A. FORTIN ◽  
D. P. HEANEY

Genetic and phenotypic relationships among carcass traits were calculated for 654 ram lambs from 210 sires of three synthetic strains developed at the Animal Research Centre. Lambs were housed indoors in a controlled environment on expanded metal floors and reared artificially with milk replacer and solid diets. Paternal half-sib estimates of heritability at 36-kg body weight and 116 of age were moderate to high ranging from 0.38 to 0.67 for shoulder and leg (trimmed and lean), total trimmed retail cuts, total lean, chilled carcass weight and lean weight per day (P < 0.01). Estimates of phenotypic and genetic correlations between the above traits showed a significantly favorable relationship indicating their usefulness as criteria in selection for meatiness. Heritability estimates for front, back and total in rough retail cuts, trimmed loin cuts, lean in rack and loin, kidney fat weight and dressing percentage ranged from −0.19 to 0.27 (P > 0.05). Estimates involving loin, rack, front, back, total retail cuts, kidney fat wt, dressing percentage and chilled carcass weight per day showed lower and nonsignificant relationships with total trimmed retail cuts or total lean. Key words: Sheep, heritability, genetic and phenotypic correlations, lamb carcass traits


2004 ◽  
Vol 84 (4) ◽  
pp. 599-609 ◽  
Author(s):  
J. A. Minick ◽  
M. E. Dikeman ◽  
E. J. Pollak ◽  
D. E. Wilson

Heritabilities and correlations of Warner-Bratzler shear force (WBSF), marbling score (MS), hot carcass weight (HCW),12–13th rib-fat (FAT), and ribeye area (REA) were calculated from 3360 Angus-, Charolais-, Hereford-, and Simmental-sired cattle in the C attleman’s Beef Board Carcass Merit Project. The heritabilities (± SE) for WBSF, MS, HCW, FAT, and REA were 0.34 ± 0.25, 0.43 ± 0.28, 0.73 ± 0.35, 0.16 ± 0.19, and 0.56 ± 0.31 in Angus; 0.43 ± 0.22, 0.30 ± 0.18, 0.21 ± 0.16, 0.35 ± 0.20, and 0.23 ± 0.16 in Charolais; 0.12 ± 0.11, 0.55 ± 0.22, 0.20 ± 0.14, 0.25 ± 0.15 and 0.34 ± 0.17 in Hereford; and 0.16 ± 0.14, 0.44 ± 0.20, 0.45 ± 0.20, 0.23 ± 0.16, and 0.30 ± 0.18 in Simmental. The genetic correlations, averaged across analysis type, for WBSF-MS, WBSF-HCW, WBSF-FAT, WBSF-REA, MS-HCW, MS-FAT, MS-REA, HCW-FAT, HCW-REA, and FAT-REA were -0.17, 0.32, -0.23, 0.30, 0.10, -0.17, 0.39, -0.15, 0.68, and -0.86 in Angus; -0.42, 0.77, 0.52, -0.05, -0.44, -0.22, -0.19, 0.66, -0.05, and -0.24 in Charolais; -0.43, -0.04, -0.33, 0.09, 0.08, 0.79, -0.14, -0.26, 0.50, and -0.38 in Hereford; and 0.55, 0.08, 0.62, -0.08, 0.30, 0.61, -0.14, 0.06, 0.65, and -0.48 in Simmental. Key words: Beef cattle, genetic parameters, carcass quality, tenderness


Sign in / Sign up

Export Citation Format

Share Document