scholarly journals Evaluation of coated steroidal implants containing trenbolone acetate and estradiol-17β on live performance, carcass traits, and sera metabolites in finishing steers

2018 ◽  
Vol 96 (5) ◽  
pp. 1704-1723 ◽  
Author(s):  
Zachary K Smith ◽  
Alex J Thompson ◽  
John P Hutcheson ◽  
Wade T Nichols ◽  
Bradley J Johnson
2019 ◽  
Vol 3 (4) ◽  
pp. 1162-1172
Author(s):  
Tassilo Brand ◽  
Martin Hünerberg ◽  
Tim A McAllister ◽  
Maolong He ◽  
Atef M Saleem ◽  
...  

Abstact: The purpose of this study was to evaluate the effect of a phytogenic feed additive (Digestarom [DA]; Biomin, Getzersdorf, Austria) on growth performance, feed intake, carcass traits, fatty acid composition, and liver abscesses of finishing steers. One hundred twenty Angus × Charolais crossbred steers (488 ± 26.5 kg) were used in a 110-d feeding experiment. Steers were blocked by weight and randomly assigned to 12 pens with 10 steers per pen. Each pen was allocated to one of three diets. Each diet contained 86.5% barley, 10.0% barley silage, and 3.5% vitamin and mineral supplement on a dry matter (DM) basis. The diets contained 0, 0.05, and 0.1 g DA/kg complete diet (DM basis), to achieve average daily DA intakes of 0 (control), 0.5 (LowDA), and 1.0 g (HighDA) per steer. Diets were prepared once daily and provided ad libitum. Two pens per treatment were equipped to record individual feed intake behavior. Steers were weighed every 28 d and carcass traits and liver scores were recorded at slaughter. Dry matter intake (average: 9.34 kg/d) did not differ (P > 0.05) among diets. Average daily gain tended to increase linearly as DA increased (control: 1.82; LowDA: 1.87; and HighDA: 1.95 kg/d; P < 0.09), but gain:feed ratio was not affected. Supplementation of DA affected longissimus muscle area quadratically (P = 0.05) with the largest area observed for LowDA. However, dressing percentage decreased linearly in response to increasing level of DA (P < 0.01). Total abscessed livers were not affected, whereas proportion of severe liver abscesses was numerically lower with DA (30.8% and 42.5% for LowDA and HighDA) compared to the control (50%).


2008 ◽  
Vol 35 (1) ◽  
pp. 88-97 ◽  
Author(s):  
E. Kamanga-Sollo ◽  
M.E. White ◽  
M.R. Hathaway ◽  
K.Y. Chung ◽  
B.J. Johnson ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Pedro H V Carvalho ◽  
Mariana F Westphalen ◽  
Jonathan A Campbell ◽  
Tara L Felix

Abstract The objectives of the study were to determine the effect of coated or noncoated hormone implants on growth performance, carcass characteristics, and serum estradiol-17β (E2) concentrations of Holstein steers fed a grain-based diet for 112 d. Seventy-nine Holstein steers [average initial body weight (BW) = 452 ± 5.5 kg] were stratified by BW and allotted to one of two treatments: 1) Holstein steers implanted with a coated implant containing 200 mg of trenbolone acetate (TBA) and 40 mg E2 (Revalor-XS (Merck Animal Health; Summit, NJ)] on day 0 (XS) or 2) Holstein steers implanted two times (days 0 and 56) with a noncoated implant containing 80 mg of TBA and 16 mg of E2 [(2IS) Revalor-IS (Merck Animal Health)]. Data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). There was no effect (P ≥ 0.71) of implant strategy on initial, middle, and final BW. No effect (P ≥ 0.12) of implant strategy was observed on average daily gain, dry matter intake, or gain-to-feed ratio. There were no effects (P ≥ 0.11) of implant strategy on carcass characteristics. There was an implant × day interaction (P < 0.01) for the circulation of serum E2 concentrations. Serum E2 concentration increased similarly 14 d after Holstein steers were implanted, regardless of implant strategy. At 28 d, after steers were implanted, steers in the XS group had less serum E2 concentration than Holstein steers in the 2IS group. However, at 56 d after the first implantation, both groups, once again, had similar serum E2 concentrations and E2 concentrations were less on day 56 than day 28 for both strategies. Holstein steers implanted with 2IS had greater serum E2 concentration on day 70 and E2 concentrations remained greater than serum E2 of Holstein steers implanted XS for the duration of the trial (day 112). In summary, there was no effect of coated or two doses of noncoated implant on growth performance or carcass characteristics of Holstein steers.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Warren C Rusche ◽  
Julie Ann Walker ◽  
Peter Sexton ◽  
Rebecca S Brattain ◽  
Zachary K Smith

Abstract Crossbred beef steers with a high percentage of Angus ancestry [n = 240, initial shrunk body weight (BW), 404 ± 18.5 kg] were used in a 117-d feedlot experiment to evaluate the effect of hybrid rye (Rye; KWS Cereals USA, LLC, Champaign, IL) as a replacement for dry-rolled corn (DRC) on growth performance, carcass traits, and comparative net energy (NE) value in diets fed to finishing steers. Rye from a single hybrid (KWS Bono) with an ergot alkaloid concentration of 392 ppb was processed with a roller mill to a processing index (PI) of 78.8 ± 2.29. Four treatments were used in a completely randomized design (n = 6 pens/treatment; 10 steers/pen), where DRC (PI = 86.9 ± 4.19) was replaced by varying proportions of Rye [DRC:Rye, dry matter (DM) basis (60:0), (40:20), (20:40), and (0:60)]. Liver abscess scores and carcass characteristics were collected at the abattoir. Carcass-adjusted performance was calculated from hot carcass weight (HCW)/0.625. Performance-adjusted NE was calculated using carcass-adjusted average daily gain (ADG), DM intake (DMI), and mean equivalent shrunk BW with the comparative NE values for rye calculated using the replacement technique. Data were analyzed using the GLIMMIX procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) with pen as the experimental unit. Treatment effects were tested using linear and quadratic contrasts, as well as between diets with and without Rye. Replacing DRC with Rye linearly decreased (P ≤ 0.01) carcass-adjusted final BW, ADG, DMI, and gain:feed (G:F). Feeding rye linearly decreased HCW and longissimus muscle area (P ≤ 0.04). Distributions of liver scores and USDA grades for quality and yield were unaffected by treatment (P ≥ 0.09). Estimated replacement NE for maintenance (NEm) and gain (NEg) values for rye, when included at 60% of diet DM, were 1.90 and 1.25 Mcal/kg, respectively. Rye can be a suitable feed ingredient in finishing diets for feedlot steers. Estimated replacement values of Rye when fed at 60% of diet DM closely agreed with current tabular standards but, when included at 20% of diet DM, estimated NEm and NEg values of Rye were increased 9.5% and 12.8%, respectively. Net energy value of Rye for gain is approximately 84% compared to DRC; thus, the complete replacement of DRC with Rye depressed DMI, ADG, G:F, and carcass weight.


2019 ◽  
Vol 4 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Pedro Henrique Vilela Carvalho ◽  
George A Perry ◽  
Tara L Felix

Abstract The objectives of the study were to determine the effect of steroidal implants on growth performance, carcass characteristics, and estradiol-17β (E2) concentrations in the blood and longissimus muscle of Holstein steers fed a grain-based diet. Seventy Holstein steers (average initial BW = 275 ± 6.4 kg, 10 to 12 mo of age) were assigned to treatments: (i) implanted with 80 mg of trenbolone acetate (TBA) and 16 mg of E2 (Component TE-IS with Tylan; Elanco Animal Health, Greenfield, IN) at the start of the trial (day 0), and reimplanted with 120 mg of TBA and 24 mg of E2 (Component TE-S with Tylan; Elanco Animal Health) on day 84 of the experiment; or (ii) no implant. Implanted Holstein steers were heavier (P ≤ 0.01) than nonimplanted Holstein steers in the middle (day 84) and at the end of the experiment (day 186). Implanting Holstein steers increased (P < 0.01) average daily gain (ADG) and dry matter intake (DMI) without affecting gain-to-feed ratio compared with nonimplanted animals. Carcasses from implanted Holstein steers had greater (P < 0.01) hot carcass weight (HCW) and longissimus muscle (LM) area than carcasses from nonimplanted steers. Implanting did not affect (P ≥ 0.21) other carcass characteristics. There was an increase (P = 0.03) of 1.3 pg of E2/g of muscle in implanted Holstein steers compared with that from nonimplanted Holstein steers. There was an implant × day interaction (P < 0.01) in serum E2 concentrations. Serum E2 concentrations were not altered in nonimplanted Holstein steers, whereas E2 concentration increased (P < 0.01) after steers were implanted, regardless of implant characteristics. Serum E2 peaked at 28 days after the first implant and then rapidly declined after day 56. In summary, steroidal implants administered on days 0 and 84 increased DMI, ADG, HCW, and LM area in Holstein steers compared with nonimplanted steers due to increased serum E2 concentrations. However, these changes did not improve feed efficiency or other carcass characteristics.


2019 ◽  
Vol 3 (4) ◽  
pp. 1182-1193 ◽  
Author(s):  
Zachary K Smith ◽  
Ben P Holland ◽  
Alyssa B Word ◽  
Grant I Crawford ◽  
Wade N Nichols ◽  
...  

Abstract Two experiments evaluated the effect of implant number, type, and total steroidal dose on live animal performance and carcass traits in heifers fed for three different days on feed (DOF). In experiment 1, heifers (n = 3,780; 70 heifers/pen and 9 pens/treatment; initial body weight [BW] = 309 kg) were used in a 2 × 3 factorial arrangement of treatments. Factors were as follows: 1) implant (all from Merck Animal Health, De Soto, KS): 200 mg trenbolone acetate (TBA) and 20 mg estradiol-17β (E2) administered on arrival (SINGLE), or 80 mg TBA and 8 mg E2 administered on arrival followed by 200 mg TBA and 20 mg E2 after approximately 90 d (REPEATED) and 2) duration of DOF: harvested after approximately 172, 193, and 214. In experiment 2, heifers (n = 3,719; 65 to 70 heifers/pen and 9 pens/treatment; initial BW = 337 kg) were used with the same factors as experiment 1, except DOF were 150, 171, and 192. No implant × DOF interaction (P ≥ 0.06) was noted for any performance parameters in either experiment. Heifers administered REPEATED had improved (P ≤ 0.05) live gain to feed ratio (G:F) and carcass-adjusted G:F and tended (P = 0.09) to have greater hot carcass weight (HCW) in experiment 1. Increasing DOF resulted in greater (P ≤ 0.01) live and carcass-adjusted final BW and decreased (P = 0.01) live ADG in experiment 1. As DOF increased, HCW, HCW gain, and dressing% (P ≤ 0.01) increased in experiment 1. The mean carcass transfer was 79.6% across the 42 d terminal window in experiment 1. In experiment 2, REPEATED had improved (P = 0.03) carcass-adjusted G:F compared with SINGLE, but HCW was not different (P = 0.36) between treatments. Increased DOF resulted in greater (P ≤ 0.01) final live and carcass-adjusted BW, decreased (P ≤ 0.01) live and carcass-adjusted ADG, and poorer (P ≤ 0.01) live and carcass-adjusted G:F in experiment 2. In experiment 2, dressing percentage was greater (P = 0.02) in REPEATED compared with SINGLE. Heifers given SINGLE had greater (P = 0.01) back fat and estimated empty body fat (EBF), whereas REPEATED had fewer (P = 0.01) Yield Grade 4 carcasses and greater (P = 0.01) longissimus muscle (LM) area. Increased DOF resulted in greater (P ≤ 0.04) HCW, HCW gain, dressing%, back fat, LM area, marbling, EBF%, and United States Department of Agriculture (USDA) Prime-grading carcasses, Yield Grade 4 and 5, and over 454-kg carcasses in experiment 2. Carcass ADG and carcass transfer indicate a 0.70 kg carcass ADG between 150 and 192 DOF, resulting in an average carcass transfer of 72.2% in experiment 2. Although feedlot growth performance and HCW did not differ between the implant regimens tested, increasing DOF resulted in decreased live growth performance while increasing the proportion of USDA prime carcasses and HCW.


Sign in / Sign up

Export Citation Format

Share Document