O-Mannosylation is Required for Degradation of the Endoplasmic Reticulum-associated Degradation Substrate Gas1*p via the Ubiquitin/Proteasome Pathway in Saccharomyces cerevisiae

2007 ◽  
Vol 143 (4) ◽  
pp. 555-567 ◽  
Author(s):  
H. Hirayama ◽  
M. Fujita ◽  
T. Yoko-o ◽  
Y. Jigami
mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
J. M. H. Geddes ◽  
M. Caza ◽  
D. Croll ◽  
N. Stoynov ◽  
L. J. Foster ◽  
...  

ABSTRACTThe opportunistic fungal pathogenCryptococcus neoformanscauses life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway inC. neoformansshowed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis.IMPORTANCEFungi cause life-threatening diseases, but very few drugs are available to effectively treat fungal infections. The pathogenic fungusCryptococcus neoformanscauses a substantial global burden of life-threatening meningitis in patients suffering from HIV/AIDS. An understanding of the mechanisms by which fungi deploy virulence factors to cause disease is critical for developing new therapeutic approaches. We employed a quantitative proteomic approach to define the changes in the protein complement that occur upon modulating the cAMP signaling pathway that regulates virulence inC. neoformans. This approach identified a conserved role for cAMP signaling in the regulation of the ubiquitin-proteasome pathway and revealed a link between this pathway and elaboration of a major virulence determinant, the polysaccharide capsule. Targeting the ubiquitin-proteasome pathway opens new therapeutic options for the treatment of cryptococcosis.


2011 ◽  
Vol 286 (27) ◽  
pp. 24426-24433 ◽  
Author(s):  
Justine P. Lu ◽  
Yuan Wang ◽  
Danielle A. Sliter ◽  
Margaret M. P. Pearce ◽  
Richard J. H. Wojcikiewicz

Inositol 1,4,5-trisphosphate (IP3) receptors are endoplasmic reticulum membrane calcium channels that, upon activation, are degraded via the ubiquitin-proteasome pathway. While searching for novel mediators of IP3 receptor processing, we discovered that RNF170, an uncharacterized RING domain-containing protein, associates rapidly with activated IP3 receptors. RNF170 is predicted to have three membrane-spanning helices, is localized to the ER membrane, and possesses ubiquitin ligase activity. Depletion of endogenous RNF170 by RNA interference inhibited stimulus-induced IP3 receptor ubiquitination, and degradation and overexpression of a catalytically inactive RNF170 mutant suppressed stimulus-induced IP3 receptor processing. A substantial proportion of RNF170 is constitutively associated with the erlin1/2 (SPFH1/2) complex, which has been shown previously to bind to IP3 receptors immediately after their activation. Depletion of RNF170 did not affect the binding of the erlin1/2 complex to stimulated IP3 receptors, whereas erlin1/2 complex depletion inhibited RNF170 binding. These results suggest a model in which the erlin1/2 complex recruits RNF170 to activated IP3 receptors where it mediates IP3 receptor ubiquitination. Thus, RNF170 plays an essential role in IP3 receptor processing via the ubiquitin-proteasome pathway.


2002 ◽  
Vol 38 ◽  
pp. 51-63 ◽  
Author(s):  
Fergus J Doherty ◽  
Simon Dawson ◽  
R John Mayer

Intracellular proteins are targeted for degradation by the covalent attachment of chains of the small protein ubiquitin; a process known as ubiquitylation. Many proteins are phosphorylated prior to ubiquitylation, and therefore ubiquitylation and degradation of these proteins is regulated by kinase activity and signalling cascades. Many ubiquitylated proteins are degraded by the 26 S proteasome complex, which is found in the cytosol and nucleus. The 26 S proteasome consists of a 20 S core with proteolytic activity and 18 S regulatory complexes containing ATPases and ubiquitin-chain-binding proteins. Proteins degraded by the ubiquitin-proteasome pathway include cyclins and other regulators of the cell cycle, and transcription factors. Abnormal polypeptides are also degraded by the ubiquitin pathway, including abnormal polypeptides in the endoplasmic reticulum, which are translocated back out of the endoplasmic reticulum prior to ubiquitylation and degradation by the proteasome. The ubiquitin-proteasome pathway is implicated in numerous diseases including cancer and neurodegenerative diseases.


2003 ◽  
Vol 376 (3) ◽  
pp. 687-696 ◽  
Author(s):  
Claudia KITZMÜLLER ◽  
Andrea CAPRINI ◽  
Stuart E. H. MOORE ◽  
Jean-Pierre FRÉNOY ◽  
Eva SCHWAIGER ◽  
...  

Recently, the role of N-linked glycans in the process of ERAD (endoplasmic reticulum-associated degradation) of proteins has been widely recognized. In the present study, we attempted to delineate further the sequence of events leading from a fully glycosylated soluble protein to its deglycosylated form. Degradation intermediates of a truncated form of ribophorin I, namely RI332, which contains a single N-linked oligosaccharide and is a substrate for the ERAD/ubiquitin-proteasome pathway, were characterized in HeLa cells under conditions blocking proteasomal degradation. The action of a deoxymannojirimycin- and kifunensine-sensitive α1,2-mannosidase was shown here to be required for both further glycan processing and progression of RI332 in the ERAD pathway. In a first step, the Man8 isomer B, generated by ER mannosidase I, appears to be the major oligomannoside structure associated with RI332 intermediates. Some other trimmed N-glycan species, in particular Glc1Man7GlcNAc2, were also found on the protein, indicating that several mannosidases might be implicated in the initial trimming of the oligomannoside. Secondly, another intermediate of degradation of RI332 accumulated after proteasome inhibition. We demonstrated that this completely deglycosylated form arose from the action of an N-glycanase closely linked to the ER membrane. Indeed, the deglycosylated form of the protein remained membrane-associated, while being accessible from the cytoplasm to ubiquitinating enzymes and to added protease. Our results indicate that deglycosylation of a soluble ERAD substrate glycoprotein occurs in at least two distinct steps and is coupled with the retro-translocation of the protein preceding its proteasomal degradation.


Sign in / Sign up

Export Citation Format

Share Document