scholarly journals An iterative method of statistical tolerancing based on the unified Jacobian–Torsor model and Monte Carlo simulation

2020 ◽  
Vol 7 (2) ◽  
pp. 165-176
Author(s):  
Heping Peng ◽  
Zhuoqun Peng

Abstract This paper focuses on exploring an iterative method of statistical tolerance design to guide designers to select tolerances more economically and effectively. After having identified the assembly functional requirement (FR) and the functional elements (FEs) of corresponding tolerance chain, the expression of a unified Jacobian–Torsor model can be derived. Monte Carlo simulation is employed to generate random variables simulating the variations of small displacement torsor associated with the FE pairs with all the generated random values being within the intervals constrained by the corresponding tolerance zones. Then, the real multiplication operations are repeatedly executed to this model, a large number of real torsor component values of FR will be obtained and we can perform statistical analysis for these simulated data to get the statistical limits of the assembly FR in the desired direction. The tolerances of critical FEs may need to be adjusted to satisfy the assembly FR imposed by the designer, and the percentage contribution of each FE to the assembly FR can help determine these critical tolerances that need to be tightened or loosened. Once the calculated FR is in close agreement with the imposed FR, the iterative process can be stopped, and the statistical tolerance redesign is achieved. The effectiveness of the proposed method is illustrated with a case study. Compared with the deterministic tolerancing method, the results show that the proposed method is more economical and that can relax significantly the precision required, manufacturing and inspection costs can then be reduced considerably.

2014 ◽  
Vol 12 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Sekar Vinodh ◽  
Gopinath Rathod

Purpose – The purpose of this paper is to present an integrated technical and economic model to evaluate the reusability of products or components. Design/methodology/approach – Life cycle assessment (LCA) methodology is applied to obtain the product’s environmental performance. Monte Carlo simulation is utilized for enabling sustainable product design. Findings – The results show that the model is capable of assessing the potential reusability of used products, while the usage of simulation significantly increases the effectiveness of the model in addressing uncertainties. Research limitations/implications – The case study has been conducted in a single manufacturing organization. The implications derived from the study are found to be practical and useful to the organization. Practical implications – The paper reports a case study carried out for an Indian rotary switches manufacturing organization. Hence, the model is practically feasible. Originality/value – The article presents a study that investigates LCA and simulation as enablers of sustainable product design. Hence, the contributions of this article are original and valuable.


2014 ◽  
Vol 580-583 ◽  
pp. 954-957
Author(s):  
Ling Qiang Yang ◽  
Rui Gao ◽  
Yan Wang

Monte Carlo simulation provides a probabilistic method to evaluate the physical behavior of earth dam. Therefore, the behavior could be got in a more realistic manner. Based on the theory, an innovative software program code is developed by combining the Monte Carlo and finite difference methods to predict the performance of earth dams after impounding. In order to assess the efficiency of the method, the case study of earth dam, located at Southeast of China, has been studied in detail. The performance of this dam is predicted and compared with the field monitoring by using the monitoring data. The results shows the robustness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document