Odorant-Based Detection and Discrimination of Two Economic Pests in Export Apples

Author(s):  
Flore Mas ◽  
Rachael Horner ◽  
Sylvie Cazères ◽  
Maryam Alavi ◽  
David Maxwell Suckling

Abstract Detection of pest infestations in fresh produce traded internationally could offer improved prospects for reducing the movement of unwanted pests. Because immature stages of some pests can be difficult to find visually, other cues such as herbivore-induced volatiles that can potentially be detected at the early stages of infestation are worth investigating. In this study, we artificially infested postharvested apples (Malus × domestica ‘Royal Gala’) with two economic apple pests, the specialist codling moth (CM, Cydia pomonella Linnaeus, Lepidoptera: Tortricidae) and the generalist Queensland fruit fly (QFF, Bactrocera tryoni, Froggatt, Diptera: Tephritidae) and collected volatile organic compounds (VOCs) over time (days 0, 6, and 14–15). In both infestation experiments, we found a strong and significant interaction between time and treatment. Apples infested with the QFF emitted lower total amounts of VOCs than uninfested apples, whereas apples infested with the CM released similar total amounts of VOCs. Apples infested with CM had increases in several hexyl and butyl esters, which were particularly noticeable after 15 d. In contrast, changes in ethyl esters were characteristics of QFF infestation and could be detected from day 6. Our multilevel and multivariate statistical analysis identified specific volatile biomarkers for each species at each sampling time that can be used to design a new tool for remote detection and surveillance of these invasive pests in harvested apples. Nevertheless, other information such as the cultivar as well as the storage condition needs to be taken into consideration to increase accuracy of future odorant-based sensors for pest identification.

2005 ◽  
Vol 40 (3) ◽  
pp. 255-262 ◽  
Author(s):  
James D. Hansen ◽  
Donald W. Schlaman ◽  
Ron P. Haff ◽  
Wee L. Yee

Radiographic techniques were investigated for their potential to detect internal pests in deciduous tree fruits. Two non-destructive methods, X-ray CT imaging and film X-ray, were used to detect larval feeding damage caused by codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in apples. In addition, CT imaging was used to detect larvae of the codling moth and western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in cherries. Both techniques showed evidence of codling moth feeding tunnels in apples, as well as in cherries using CT imaging. CT images of cherries infested with fruit fly larvae showed retraction of the fruit pulp from the seed. This study supports the use of radiography to detect internally damaged fruits for sorting on the commercial packing line.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5094
Author(s):  
Soledad Quiroz-Carreño ◽  
Edgar Pastene-Navarrete ◽  
Cesar Espinoza-Pinochet ◽  
Evelyn Muñoz-Núñez ◽  
Luis Devotto-Moreno ◽  
...  

The Chilean plants Discaria chacaye, Talguenea quinquenervia (Rhamnaceae), Peumus boldus (Monimiaceae), and Cryptocarya alba (Lauraceae) were evaluated against Codling moth: Cydia pomonella L. (Lepidoptera: Tortricidae) and fruit fly Drosophila melanogaster (Diptera: Drosophilidae), which is one of the most widespread and destructive primary pests of Prunus (plums, cherries, peaches, nectarines, apricots, almonds), pear, walnuts, and chestnuts, among other. Four benzylisoquinoline alkaloids (coclaurine, laurolitsine, boldine, and pukateine) were isolated from the above mentioned plant species and evaluated regarding their insecticidal activity against the codling moth and fruit fly. The results showed that these alkaloids possess acute and chronic insecticidal effects. The most relevant effect was observed at 10 µg/mL against D. melanogaster and at 50 µg/mL against C. pomonella, being the alteration of the feeding, deformations, failure in the displacement of the larvae in the feeding medium of D. melanogaster, and mortality visible effects. In addition, the docking results show that these type of alkaloids present a good interaction with octopamine and ecdysone receptor showing a possible action mechanism.


Author(s):  
S.V. Dmitriyeva ◽  
◽  
I.M. Mityushev

This article presents the results of field screening of pheromone preparations of the codling moth, Cydia pomonella L., conducted in 2020 under conditions of the Central Region of the Russian Federation. The new «Tube» type dispensers were tested vs. standard foil-polyethylene dispenser.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 207 ◽  
Author(s):  
Rachael Horner ◽  
Georgia Paterson ◽  
James T.S. Walker ◽  
George L.W. Perry ◽  
Rodelyn Jaksons ◽  
...  

Codling moth, Cydia pomonella (Lepidoptera: Tortricidae), is a phytosanitary pest of New Zealand’s export apples. The sterile insect technique supplements other controls in an eradication attempt at an isolated group of orchards in Hawke’s Bay, New Zealand. There has been no attempt in New Zealand to characterize potential sources of uncontrolled peri-urban populations, which we predicted to be larger than in managed orchards. We installed 200 pheromone traps across Hastings city, which averaged 0.32 moths/trap/week. We also mapped host trees around the pilot eradication orchards and installed 28 traps in rural Ongaonga, which averaged 0.59 moths/trap/week. In Hastings, traps in host trees caught significantly more males than traps in non-host trees, and spatial interpolation showed evidence of spatial clustering. Traps in orchards operating the most stringent codling moth management averaged half the catch rate of Hastings peri-urban traps. Orchards with less rigorous moth control had a 5-fold higher trap catch rate. We conclude that peri-urban populations are significant and ubiquitous, and that special measures to reduce pest prevalence are needed to achieve area-wide suppression and reduce the risk of immigration into export orchards. Because the location of all host trees in Hastings is not known, it could be more cost-effectively assumed that hosts are ubiquitous across the city and the area treated accordingly.


2012 ◽  
Vol 51 (9) ◽  
pp. 1633-1638 ◽  
Author(s):  
Martin Hirschi ◽  
Christoph Spirig ◽  
Andreas P. Weigel ◽  
Pierluigi Calanca ◽  
Jörg Samietz ◽  
...  

AbstractMonthly weather forecasts (MOFCs) were shown to have skill in extratropical continental regions for lead times up to 3 weeks, in particular for temperature and if weekly averaged. This skill could be exploited in practical applications for implementations exhibiting some degree of memory or inertia toward meteorological drivers, potentially even for longer lead times. Many agricultural applications fall into these categories because of the temperature-dependent development of biological organisms, allowing simulations that are based on temperature sums. Most such agricultural models require local weather information at daily or even hourly temporal resolution, however, preventing direct use of the spatially and temporally aggregated information of MOFCs, which may furthermore be subject to significant biases. By the example of forecasting the timing of life-phase occurrences of the codling moth (Cydia pomonella), which is a major insect pest in apple orchards worldwide, the authors investigate the application of downscaled weekly temperature anomalies of MOFCs for use in an impact model requiring hourly input. The downscaling and postprocessing included the use of a daily weather generator and a resampling procedure for creating hourly weather series and the application of a recalibration technique to correct for the original underconfidence of the forecast occurrences of codling moth life phases. Results show a clear skill improvement of up to 3 days in root-mean-square error over the full forecast range when incorporating MOFCs as compared with deterministic benchmark forecasts using climatological information for predicting the timing of codling moth life phases.


Nature ◽  
1961 ◽  
Vol 190 (4775) ◽  
pp. 561-562 ◽  
Author(s):  
P. W. GEIER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document