scholarly journals Phylogeography of Sea Oats (Uniola paniculata), a Dune-building Coastal Grass in Southeastern North America

2013 ◽  
Vol 104 (5) ◽  
pp. 656-665 ◽  
Author(s):  
Richard G. Hodel ◽  
Eva Gonzales
EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Debbie Miller ◽  
Mack Thetford ◽  
Chris Verlinde ◽  
Gabriel Campbell ◽  
Ashlynn Smith

Sea oats occur throughout Florida on beach dunes and beaches and on coastal areas west to Texas and north to Maryland. Sea oats are vital dune builders that accumulate sand and prevent erosion due to wind, waves, and large storms. As sand is trapped by the long leaves of sea oats, vertical growth is stimulated, and rooting occurs at the buried nodes. This plant is extremely drought- and salt-tolerant, grows up to the high tide line of beaches, and propagates both vegetatively and by seed in the wild (Shadow 2007).https://edis.ifas.ufl.edu/sg186 This publication is derived from information in SGEB-75/SG156, Dune Restoration and Enhancement for the Florida Panhandle, by Debbie Miller, Mack Thetford, Christina Verlinde, Gabriel Campbell, and Ashlynn Smith. https://edis.ifas.ufl.edu/sg156.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 559d-559 ◽  
Author(s):  
Nancy Phiman ◽  
Michael E. Kane

Beach stabilization by replanting dune species such as Uniola paniculata L. (Sea Oats), is an accepted practice to control erosion in the southeastern United States. Increased restrictions on collection of sea oat seed and plant material for propagation is of increasing concern. Development of micropropagation protocols for establishment and production of sea oats from donor plants of known phenotype would be useful for selecting and producing plants with commercially valuable characteristics. Terminal and lateral shoot tips (3 mm wide and 4 mm high) from containerized plants were surface sterilized and established on Linsmaier & Skoog mineral salts and organics supplemented with 87.6 mM sucrose, 2.2 μM benzyladenine solidified with 0.8% TC® Agar. Terminal tiller shoot tips were more responsive than lateral shoot tips. Four monthly subcultures were. required for stabilized shoot multiplication from culture lines established from terminal tiller shoot tips. Shoot organogenesis frequently occurred from the cut leaf surfaces of subcultured shoot clusters. Microcuttings were established ex vitro in plug cells containing sand or vermiculite.


2005 ◽  
Vol 111 (8) ◽  
pp. 1632-1641 ◽  
Author(s):  
Prasanta K. Subudhi ◽  
Neil P. Parami ◽  
Stephen A. Harrison ◽  
Michael D. Materne ◽  
J. Paul Murphy ◽  
...  

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 891B-891 ◽  
Author(s):  
Carmen Valero Aracama* ◽  
Michael E. Kane ◽  
Nancy L. Philman ◽  
Sandra B. Wilson

A sea oats (Uniola paniculata L.) micropropagation protocol was previously developed for 28 genotypes that favored multiplication and rooting of shoots in vitro. However, microcutting size, morphology, and acclimatization ex vitro varied considerably among genotypes. In the present study we evaluated the effect of Stage III duration on in vitro morphology, biomass production, and ex vitro survivability of easy-(EK 16-3) and difficult-to-acclimatize (EK 11-1) sea oats genotypes. After 3, 6, and 9 weeks at Stage III, survivability of microcuttings was 85%, 96% and 98% for EK 16-3, and 2%, 27% and 40% for EK 11-1, respectively. After 9 weeks Stage III, EK 16-3 microcuttings had higher shoot dry weights but lower root dry weights than in EK 11-1. Moreover, roots in EK 11-1 were fewer but longer than in EK 16-3. Leaf production was similar in both genotypes. However, leaf elongation was significantly inhibited in EK 11-1, in which 95% of the leaves were ≤ 15 mm long in contrast with EK 16-3, with 50% leaves ≥ 16 mm long after 9 weeks Stage III. Light microscopy examinations showed anatomical similarities between EK 16-3 in vitro leaves and mature ex vitro leaves. Conversely, short in vitro leaves of EK 11-1 exhibited mesophyll disruption and reduced cuticle development. Conceivably, the short leaves had limited photosynthetic competency, thereby reducing ex vitro survival of rooted EK 11-1 microcuttings.


2008 ◽  
Vol 133 (6) ◽  
pp. 830-843 ◽  
Author(s):  
Carmen Valero Aracama ◽  
Michael E. Kane ◽  
Sandra B. Wilson ◽  
Nancy L. Philman

Growth and development of two sea oats (Uniola paniculata L.) genotypes with differing acclimatization capacities when transferred from in vitro to ex vitro greenhouse conditions were compared as a function of the duration of shoot multiplication and rooting stages. Anatomical and morphological development differed between genotypes in vitro. After 4, 8, and 12 weeks of Stage II culture, leaf length and shoot number were significantly greater for the easy-to-acclimatize genotype (EK 16-3) than the difficult-to-acclimatize genotype (EK 11-1). Shoot dry weights in both genotypes were greatest after 4 weeks culture. Browning and dying of tissue steadily increased with time. Shoot number per plantlet increased from Week 4 to 8 in both genotypes but decreased after 12 weeks. Once transferred to Stage III culture for 6 weeks, significant differences in root architecture and morphology were observed between the two genotypes. EK 16-3 plantlets developed short but numerous roots and “grass-like” leaves with fully expanded blades. Conversely, EK 11-1 plantlets developed few long roots and “lance-like” leaves, which were short, thick, and without expanded blades. Anatomical and morphological development during Stage III differed between culture duration and genotypes. Shoot and root dry weights of both genotypes increased during 3, 6, and 9 weeks of culture. Shoot dry weights of EK 16-3 plantlets were lower at 3 weeks but higher at 9 weeks than EK 11-1. Conversely, root dry weights were higher for EK 11-1 than for EK 16-3 plantlets throughout Stage III culture. Anatomical observations of EK 11-1 plantlets using light and electron microscopy correlated poor ex vitro acclimatization and poor survival with abnormal tissue organization, stomatal aperture blockage, and thylakoid membrane disruption.


2013 ◽  
Vol 31 (1) ◽  
pp. 16-19
Author(s):  
P. Nabukalu ◽  
C. A. Knott

Sign in / Sign up

Export Citation Format

Share Document