scholarly journals Sea Oats, Uniola paniculata

EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Debbie Miller ◽  
Mack Thetford ◽  
Chris Verlinde ◽  
Gabriel Campbell ◽  
Ashlynn Smith

Sea oats occur throughout Florida on beach dunes and beaches and on coastal areas west to Texas and north to Maryland. Sea oats are vital dune builders that accumulate sand and prevent erosion due to wind, waves, and large storms. As sand is trapped by the long leaves of sea oats, vertical growth is stimulated, and rooting occurs at the buried nodes. This plant is extremely drought- and salt-tolerant, grows up to the high tide line of beaches, and propagates both vegetatively and by seed in the wild (Shadow 2007).https://edis.ifas.ufl.edu/sg186 This publication is derived from information in SGEB-75/SG156, Dune Restoration and Enhancement for the Florida Panhandle, by Debbie Miller, Mack Thetford, Christina Verlinde, Gabriel Campbell, and Ashlynn Smith. https://edis.ifas.ufl.edu/sg156.

Author(s):  
Charlotte Lefebvre ◽  
Isabel Jalón Rojas ◽  
Juliette Lasserre ◽  
Sandrine Villette ◽  
Sophie Lecomte ◽  
...  

2019 ◽  
Vol 9 (20) ◽  
pp. 4466 ◽  
Author(s):  
Min Zhou ◽  
Mengquan Wu ◽  
Guangzong Zhang ◽  
Lianjie Zhao ◽  
Xiaoyun Hou ◽  
...  

Using remote sensing images of different time phases from 1990 to 2018, the surface coverage information of northern Yantai (coastline, 2 km from coastline to land) was extracted by means of average high tide line and visual interpretation. The end point change rate (EPR) and linear regression rate were used to study the coastline change rate, the fractal dimension of the coastline in the study area was analyzed, and the change of the type of coastal surface cover was analyzed by the transition matrix. The results show that: (1) Form 1990 to 2018, a significant trend of a continuous increase in the total length of coastline was observed with an increase of 181.08 km (43.18%). In the study area, the coastline of Laizhou had the greatest change rate with an EPR value of 33.67 m/a, whereas the coastline of Laishan had the smallest change rate with an EPR value of 0.30 m/a. (2) Over the past 30 years, with the rapid economic development of Yantai and the ensuant urbanization, the total surface area of the coastal zone in the study area has increased by 144.94 km2, mainly in the areas covered by structures and forests/grasses, by 112.96 km2 and 96.08 km2, respectively, while the areas of desert/bare land and water have decreased by 92.26 km2 and 12.32 km2, respectively. (3) The changes among different types in the study area were clear, mainly from desert/bare land, cultivated land, and building areas to forests/grasses cover and structures. The change areas were mainly concentrated in Laizhou, Longkou, Zhifu, and Penglai. Frequent human activities are an important factor affecting the continuous expansion of the coastal areas of Jiaodong Peninsula to the sea. Aquaculture, coastal construction, construction of artificial islands, and expansion of port terminals have seriously affected the sustainability of ecological resources in the coastal areas. At the same time, the changes in the ecological environment in the coastal zone will have a greater impact on the health of the coastal zone.


2012 ◽  
Vol 610-613 ◽  
pp. 3685-3688 ◽  
Author(s):  
Yan Gu ◽  
Ying Zhang ◽  
Zheng Jun Wang

Methods for extracting information about coastline, mean high tide line and mean low tide line from satellite images are investigated based on the satellite images which have a spatial resolution of 10m and were obtained in the coastal area of Yancheng of Jiangsu province in 2006, 2008 and 2009, respectively. The evolution of the coastal zone influenced by human activities such as harbor construction and sea reclamation for farming is analyzed. The results show that (1) comparing with low resolution RS images, the high resolution images can be used to extract more subtle culture features, from which the mean high tidal line can be extracted; (2) by combing with the tidal level of the day and based on the high tidal line extracted already, the instantaneous water line on the images and leaner relationship among them, the mean low tidal line may possibly be worked out; (3) it has been being in an accretion status since 2006, with an increasing magnitude every year, while the mean low tide line was in a dynamic balance status from 2006 to 2008, but was eroded by 840m from 2008 to 2009, being very distinct in its change.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 559d-559 ◽  
Author(s):  
Nancy Phiman ◽  
Michael E. Kane

Beach stabilization by replanting dune species such as Uniola paniculata L. (Sea Oats), is an accepted practice to control erosion in the southeastern United States. Increased restrictions on collection of sea oat seed and plant material for propagation is of increasing concern. Development of micropropagation protocols for establishment and production of sea oats from donor plants of known phenotype would be useful for selecting and producing plants with commercially valuable characteristics. Terminal and lateral shoot tips (3 mm wide and 4 mm high) from containerized plants were surface sterilized and established on Linsmaier & Skoog mineral salts and organics supplemented with 87.6 mM sucrose, 2.2 μM benzyladenine solidified with 0.8% TC® Agar. Terminal tiller shoot tips were more responsive than lateral shoot tips. Four monthly subcultures were. required for stabilized shoot multiplication from culture lines established from terminal tiller shoot tips. Shoot organogenesis frequently occurred from the cut leaf surfaces of subcultured shoot clusters. Microcuttings were established ex vitro in plug cells containing sand or vermiculite.


2019 ◽  
Vol 38 (3) ◽  
pp. 17-29 ◽  
Author(s):  
Fajar Yulianto ◽  
Suwarsono ◽  
Taufik Maulana ◽  
Muhammad Rokhis Khomarudin

Abstract Coastal landforms are located in the interface zone between atmosphere, ocean and land surface systems formed by the geomorphic process of erosion, depositional, and subsidence. Studying the dynamics of coastal landform change is important for tracing the relationship between coastal landform changes and tidal flooding in the coastal areas of Pekalongan, Indonesia. The method of integrating remote sensing data with geographic information system (GIS) techniques has been widely used to monitor and analyze the dynamics of morphology change in coastal landform areas. The purpose of this study is to map the dynamics of landform change in the study area from 1978 to 2017 and to analyze its implications for the impact of tidal flooding. The results of the mapping and change analysis associated with coastal landforms can be classified into four landform types: beach, beach ridge, backswamp and alluvial plain. Changes in coastal morphology and landform topography affected by land subsidence and changes in land use/ land cover have contributed to the occurrence of tidal flooding in the study area. Beach ridges perform an important role as natural levees which hold back and prevent the entry of seawater at high tide in coastal areas. A limitation of this study is that, as it focuses only on the physical aspects of coastal landform characteristics for one of the factors causing tidal flooding.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Jiayi Fang ◽  
Peijun Shi

The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.


Sign in / Sign up

Export Citation Format

Share Document